Back to Search Start Over

Mapping the Local Organization of Cell Membranes Using Excitation-Polarization-Resolved Confocal Fluorescence Microscopy

Authors :
Patrick Ferrand
Alla Kress
Hubert Ranchon
Xiao Wang
Julien Savatier
Hervé Rigneault
Sophie Brasselet
MOSAIC (MOSAIC)
Institut FRESNEL (FRESNEL)
Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Biophysical Journal, Biophysical Journal, Biophysical Society, 2013, 105, pp.127-136. ⟨10.1016/j.bpj.2013.05.043⟩, Biophysical Journal, 2013, 105, pp.127-136. ⟨10.1016/j.bpj.2013.05.043⟩
Publisher :
Biophysical Society. Published by Elsevier Inc.

Abstract

International audience; Fluorescence anisotropy and linear dichroism imaging have been widely used for imaging biomolecular orientational distributions in protein aggregates, fibrillar structures of cells, and cell membranes. However, these techniques do not give access to complete orientational order information in a whole image, because their use is limited to parts of the sample where the average orientation of molecules is known a priori. Fluorescence anisotropy is also highly sensitive to depolarization mechanisms such as those induced by fluorescence energy transfer. A fully excitation-polarization-resolved fluorescence microscopy imaging that relies on the use of a tunable incident polarization and a nonpolarized detection is able to circumvent these limitations. We have developed such a technique in confocal epifluorescence microscopy, giving access to new regions of study in the complex and heterogeneous molecular organization of cell membranes. Using this technique, we demonstrate morphological changes at the subdiffraction scale in labeled COS-7 cell membranes whose cytoskeleton is perturbed. Molecular orientational order is also seen to be affected by cholesterol depletion, reflecting the strong interplay between lipid-packing regions and their nearby cytoskeleton. This noninvasive optical technique can reveal local organization in cell membranes when used as a complement to existing methods such as generalized polarization.

Details

Language :
English
ISSN :
00063495 and 15420086
Issue :
1
Database :
OpenAIRE
Journal :
Biophysical Journal
Accession number :
edsair.doi.dedup.....7fb120853a97d6a8035a6c230f0e5973
Full Text :
https://doi.org/10.1016/j.bpj.2013.05.043