Back to Search Start Over

Real-time Footstep Planning and Control of the Solo Quadruped Robot in 3D Environments

Authors :
Fanny Risbourg
Thomas Corberes
Pierre-Alexandre Leziart
Thomas Flayols
Nicolas Mansard
Steve Tonneau
Équipe Mouvement des Systèmes Anthropomorphes (LAAS-GEPETTO)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
School of Informatics, University of Edinburgh, Edinburgh EH89YL, UK
ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019)
Risbourg, Fanny
Artificial and Natural Intelligence Toulouse Institute - - ANITI2019 - ANR-19-P3IA-0004 - P3IA - VALID
Source :
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), Oct 2022, Kyoto, Japan. ⟨10.1109/IROS47612.2022.9981539⟩
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

International audience; Quadruped robots have proved their robustness to cross complex terrain despite little environment knowledge. Yet advanced locomotion controllers are expected to take advantage of exteroceptive information. This paper presents a complete method to plan and control the locomotion of quadruped robots when 3D information about the surrounding obstacles is available, based on several stages of decision. We first propose a contact planner formulated as a mixed-integer program, optimized on-line at each new robot step. It selects a surface from a set of convex surfaces describing the environment for the next footsteps while ensuring kinematic constraints. We then propose to optimize the exact contact location and the feet trajectories at control frequency to avoid obstacles, thanks to an efficient formulation of quadratic programs optimizing Bezier curves. By relying on the locomotion controller of our quadruped robot Solo, we finally implement the complete method, provided as an open-source package. Its efficiency is asserted by statistical evaluation of the importance of each component in simulation, while the overall performances are demonstrated on various scenarios with the real robot.

Details

Database :
OpenAIRE
Journal :
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Accession number :
edsair.doi.dedup.....7f99bf0c0e307cb194813fdca7121032