Back to Search Start Over

Rational design of an ion-imprinted polymer for aqueous methylmercury sorption

Authors :
Sabir Khan
Gino Picasso
Ruddy L M Mesa
Rafaella Regina Alves Peixoto
Marcelo Antonio Morgano
Javier E.L. Villa
Maria Del Pilar Taboada Sotomayor
Luís Moreira Gonçalves
National University of Engineering
Universidade Estadual Paulista (Unesp)
Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM)
Fluminense Federal University (UFF)
Institute of Food Technology (ITAL)
Universidade de São Paulo (USP)
Source :
Scopus, Repositório Institucional da UNESP, Universidade Estadual Paulista (UNESP), instacron:UNESP, CONCYTEC-Institucional, Consejo Nacional de Ciencia Tecnología e Innovación Tecnológica, instacron:CONCYTEC, Nanomaterials, Volume 10, Issue 12, Nanomaterials, Vol 10, Iss 2541, p 2541 (2020), Repositório do Instituto de Tecnologia de Alimentos, Instituto de Tecnologia de Alimentos (ITAL), instacron:ITAL, Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Publication Year :
2020

Abstract

Methylmercury (MeHg+) is a mercury species that is very toxic for humans, and its monitoring and sorption from environmental samples of water are a public health concern. In this work, a combination of theory and experiment was used to rationally synthesize an ion-imprinted polymer (IIP) with the aim of the extraction of MeHg+ from samples of water. Interactions among MeHg+ and possible reaction components in the pre-polymerization stage were studied by computational simulation using density functional theory. Accordingly, 2-mercaptobenzimidazole (MBI) and 2-mercaptobenzothiazole (MBT), acrylic acid (AA) and ethanol were predicted as excellent sulfhydryl ligands, a functional monomer and porogenic solvent, respectively. Characterization studies by scanning electron microscopy (SEM) and Brunauer&ndash<br />Emmett&ndash<br />Teller (BET) revealed the obtention of porous materials with specific surface areas of 11 m2 g&minus<br />1 (IIP&ndash<br />MBI&ndash<br />AA) and 5.3 m2 g&minus<br />MBT&ndash<br />AA). Under optimized conditions, the maximum adsorption capacities were 157 &micro<br />g g&minus<br />1 (for IIP&ndash<br />AA) and 457 &micro<br />AA). The IIP&ndash<br />AA was selected for further experiments and application, and the selectivity coefficients were MeHg+/Hg2+ (0.86), MeHg+/Cd2+ (260), MeHg+/Pb2+ (288) and MeHg+/Zn2+ (1510), highlighting the material&rsquo<br />s high affinity for MeHg+. The IIP was successfully applied to the sorption of MeHg+ in river and tap water samples at environmentally relevant concentrations.

Details

Language :
English
Database :
OpenAIRE
Journal :
Scopus, Repositório Institucional da UNESP, Universidade Estadual Paulista (UNESP), instacron:UNESP, CONCYTEC-Institucional, Consejo Nacional de Ciencia Tecnología e Innovación Tecnológica, instacron:CONCYTEC, Nanomaterials, Volume 10, Issue 12, Nanomaterials, Vol 10, Iss 2541, p 2541 (2020), Repositório do Instituto de Tecnologia de Alimentos, Instituto de Tecnologia de Alimentos (ITAL), instacron:ITAL, Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Accession number :
edsair.doi.dedup.....7f7150e53161fc4bc3b2e7b6dcff1661