Back to Search Start Over

Humic acid removal and microbial community function in membrane bioreactor

Authors :
ByeongGyu Choi
Ki-Young Park
JunHee Ryu
Jaehyun Jung
Ji Hyang Kweon
Won-Jung Song
Source :
Journal of Hazardous Materials. 417:126088
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

A membrane bioreactor with humic acid substrate (MBR-H) was operated to investigate organic removal and membrane performance. Approximately, 60% of chemical oxygen demand removal was observed in MBR-H. The biosorption capacity reached to the maximum value of 29.2 mg g−1 in the experiments with various activated sludge concentrations and the amount adsorbed on the newly produced microbes was limited. To understand key functions of microorganisms in the biodegradation of humic acid, the microbial community was examined. The dominant phylum was changed from Actinobacteria at the raw sludge to Proteobacteria at the MBR-H. Especially, great increases of β-, γ-, and δ-Proteobacteria in the MBR-H indicated that those class of Proteobacteria played a vital role in humic acid removal. Investigation at the genus level showed enrichment of Stenotrophobacter in the MBR-H, which indicated the presence of metabolites in the proposed humic substance degradation pathway. In addition, the bacteria producing extracellular polymeric substances were increased in the MBR-H. Substantial variation of microbial community function was occurred in the MBR to degrade humic acid. Operational parameters in MBRs might be sought to maintain water permeability and to obtain preferable condition to evolution of microbial consortia for degradation of the refractory organic matter.

Details

ISSN :
03043894
Volume :
417
Database :
OpenAIRE
Journal :
Journal of Hazardous Materials
Accession number :
edsair.doi.dedup.....7f48b2f79a889c1524f9edbb61dbf9e7
Full Text :
https://doi.org/10.1016/j.jhazmat.2021.126088