Back to Search Start Over

Exact WKB analysis of N $$ \mathcal{N} $$ = 2 gauge theories

Authors :
Jan Troost
Madhusudhan Raman
Renjan R. John
Sujay K. Ashok
Dileep P. Jatkar
Institute of Mathematical Sciences [Chennai] (IMSc)
Laboratoire de Physique Théorique de l'ENS (LPTENS)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] (LPTENS)
Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of High Energy Physics, Journal of High Energy Physics, Springer, 2016, 2016 (7), ⟨10.1007/JHEP07(2016)115⟩, Journal of High Energy Physics, 2016, 2016 (7), ⟨10.1007/JHEP07(2016)115⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

We study $ \mathcal{N} $ = 2 supersymmetric gauge theories with gauge group SU(2) coupled to fundamental flavours, covering all asymptotically free and conformal cases. We re-derive, from the conformal field theory perspective, the differential equations satisfied by ϵ$_{1}$- and ϵ$_{2}$-deformed instanton partition functions. We confirm their validity at leading order in ϵ$_{2}$ via a saddle-point analysis of the partition function. In the semi-classical limit we show that these differential equations take a form amenable to exact WKB analysis. We compute the monodromy group associated to the differential equations in terms of ϵ$_{1}$-deformed and Borel resummed Seiberg-Witten data. For each case, we study pairs of Stokes graphs that are related by flips and pops, and show that the monodromy groups allow one to confirm the Stokes automorphisms that arise as the phase of ϵ$_{1}$ is varied. Finally, we relate the Borel resummed monodromies with the traditional Seiberg-Witten variables in the semi-classical limit.

Details

Language :
English
ISSN :
11266708 and 10298479
Database :
OpenAIRE
Journal :
Journal of High Energy Physics, Journal of High Energy Physics, Springer, 2016, 2016 (7), ⟨10.1007/JHEP07(2016)115⟩, Journal of High Energy Physics, 2016, 2016 (7), ⟨10.1007/JHEP07(2016)115⟩
Accession number :
edsair.doi.dedup.....7f41d9b81bdbf633c58d3997edc53bbb
Full Text :
https://doi.org/10.1007/JHEP07(2016)115⟩