Back to Search Start Over

FAAH-Catalyzed C–C Bond Cleavage of a New Multitarget Analgesic Drug

Authors :
David F. Woodward
Marco Allarà
Fabiana Piscitelli
Francesca Guida
Angela Amoresano
Jenny W. Wang
Livio Luongo
Rosa Maria Vitale
Cristoforo Silvestri
Vincenzo Di Marzo
Anna Illiano
Alessia Ligresti
Jose L. Martos
Pietro Amodeo
Gennaro Marino
Robert W. Carling
Sabatino Maione
Ligresti, A
Silvestri, Ciro
Vitale, Rm
Martos, Jl
Piscitelli, F
Wang, Jw
Allarà, M
Carling, Rw
Luongo, L
Guida, F
Illiano, A
Amoresano, A
Maione, S
Amodeo, P
Woodward, Df
Di Marzo, V
Marino, G.
Ligresti, Alessia
Silvestri, Cristoforo
Vitale, Rosa Maria
Martos, Jose L
Piscitelli, Fabiana
Wang, Jenny W
Allarà, Marco
Carling, Robert W
Luongo, Livio
Guida, Francesca
Illiano, Anna
Amoresano, Angela
Maione, Sabatino
Amodeo, Pietro
Woodward, David F
Di Marzo, Vincenzo
Marino, Gennaro
Source :
ACS chemical neuroscience (2018). doi:10.1021/acschemneuro.8b00315, info:cnr-pdr/source/autori:Ligresti A.; Silvestri C.; Vitale R.M.; Martos J.L.; Piscitelli F.; Wang J.W.; Allara M.; Carling R.W.; Luongo L.; Guida F.; Illiano A.; Amoresano A.; Maione S.; Amodeo P.; Woodward D.F.; Di Marzo V.; Marino G./titolo:FAAH-Catalyzed C-C Bond Cleavage of a New Multitarget Analgesic Drug/doi:10.1021%2Facschemneuro.8b00315/rivista:ACS chemical neuroscience/anno:2018/pagina_da:/pagina_a:/intervallo_pagine:/volume
Publication Year :
2018
Publisher :
American Chemical Society (ACS), 2018.

Abstract

The discovery of extended catalytic versatilities is of great importance in both the chemistry and biotechnology fields. Fatty acid amide hydrolase (FAAH) belongs to the amidase signature superfamily and is a major endocannabinoid inactivating enzyme using an atypical catalytic mechanism involving hydrolysis of amide and occasionally ester bonds. FAAH inhibitors are efficacious in experimental models of neuropathic pain, inflammation, and anxiety, among others. We report a new multitarget drug, AGN220653, containing a carboxyamide-4-oxazole moiety and endowed with efficacious analgesic and anti-inflammatory activities, which are partly due to its capability of achieving inhibition of FAAH, and subsequently increasing the tissue concentrations of the endocannabinoid anandamide. This inhibitor behaves as a noncompetitive, slowly reversible inhibitor. Autoradiography of purified FAAH incubated with AGN220653, opportunely radiolabeled, indicated covalent binding followed by fragmentation of the molecule. Molecular docking suggested a possible nucleophilic attack by FAAH-Ser241 on the carbonyl group of the carboxyamide-4-oxazole moiety, resulting in the cleavage of the C-C bond between the oxazole and the carboxyamide moieties, instead of either of the two available amide bonds. MRM-MS analyses only detected the Ser241-assisted formation of the carbamate intermediate, thus confirming the cleavage of the aforementioned C-C bond. Quantum mechanics calculations were fully consistent with this mechanism. The study exemplifies how FAAH structural features and mechanism of action may override the binding and reactivity propensities of substrates. This unpredicted mechanism could pave the way to the future development of a completely new class of amidase inhibitors, of potential use against pain, inflammation, and mood disorders.

Details

ISSN :
19487193
Volume :
10
Database :
OpenAIRE
Journal :
ACS Chemical Neuroscience
Accession number :
edsair.doi.dedup.....7f3c3742f4f0d43e9590930ffd994e96
Full Text :
https://doi.org/10.1021/acschemneuro.8b00315