Back to Search
Start Over
Modeling Data with Excess Zeros and Measurement Error: Application to Evaluating Relationships between Episodically Consumed Foods and Health Outcomes
- Source :
- Biometrics. 65:1003-1010
- Publication Year :
- 2009
- Publisher :
- Wiley, 2009.
-
Abstract
- Dietary assessment of episodically consumed foods gives rise to nonnegative data that have excess zeros and measurement error. Tooze et al. (2006, Journal of the American Dietetic Association 106, 1575-1587) describe a general statistical approach (National Cancer Institute method) for modeling such food intakes reported on two or more 24-hour recalls (24HRs) and demonstrate its use to estimate the distribution of the food's usual intake in the general population. In this article, we propose an extension of this method to predict individual usual intake of such foods and to evaluate the relationships of usual intakes with health outcomes. Following the regression calibration approach for measurement error correction, individual usual intake is generally predicted as the conditional mean intake given 24HR-reported intake and other covariates in the health model. One feature of the proposed method is that additional covariates potentially related to usual intake may be used to increase the precision of estimates of usual intake and of diet-health outcome associations. Applying the method to data from the Eating at America's Table Study, we quantify the increased precision obtained from including reported frequency of intake on a food frequency questionnaire (FFQ) as a covariate in the calibration model. We then demonstrate the method in evaluating the linear relationship between log blood mercury levels and fish intake in women by using data from the National Health and Nutrition Examination Survey, and show increased precision when including the FFQ information. Finally, we present simulation results evaluating the performance of the proposed method in this context.
- Subjects :
- Statistics and Probability
Biometry
National Health and Nutrition Examination Survey
Calibration (statistics)
Health Status
Population
Context (language use)
Diet Records
Article
General Biochemistry, Genetics and Molecular Biology
Eating
Surveys and Questionnaires
Statistics
Covariate
Econometrics
Animals
Humans
Medicine
education
education.field_of_study
Models, Statistical
Observational error
General Immunology and Microbiology
business.industry
Applied Mathematics
Fishes
Regression analysis
Mercury
General Medicine
Nutrition Surveys
Health Surveys
Regression Analysis
Female
General Agricultural and Biological Sciences
business
Subjects
Details
- ISSN :
- 0006341X
- Volume :
- 65
- Database :
- OpenAIRE
- Journal :
- Biometrics
- Accession number :
- edsair.doi.dedup.....7f2979cd79f49041305df7ff33b08c26
- Full Text :
- https://doi.org/10.1111/j.1541-0420.2009.01223.x