Back to Search Start Over

Additive rheology of complex granular flows

Authors :
Thanh-Trung Vo
Farhang Radjai
Jean-Yves Delenne
Saeid Nezamabadi
Patrick Mutabaruka
Danang Architecture University (DAU)
Physique et Mécanique des Milieux Divisés (PMMD)
Laboratoire de Mécanique et Génie Civil (LMGC)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Multiscale Material Science for Energy and Environment (MSE 2)
Massachusetts Institute of Technology (MIT)
Ministry of Education and Training in Vietnam
Campus France
Labex NUMEV (University of Montpellier).
Source :
Nature Communications, Nature Communications, Nature Publishing Group, 2020, 11 (1), ⟨10.1038/s41467-020-15263-3⟩, Nature Communications (2041-1723) (Nature Research), 2020-03, Vol. 11, N. 1, P. 1476 (8p.), Nature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Granular flows are omnipresent in nature and industrial processes, but their rheological properties such as apparent friction and packing fraction are still elusive when inertial, cohesive and viscous interactions occur between particles in addition to frictional and elastic forces. Here we report on extensive particle dynamics simulations of such complex flows for a model granular system composed of perfectly rigid particles. We show that, when the apparent friction and packing fraction are normalized by their cohesion-dependent quasistatic values, they are governed by a single dimensionless number that, by virtue of stress additivity, accounts for all interactions. We also find that this dimensionless parameter, as a generalized inertial number, describes the texture variables such as the bond network connectivity and anisotropy. Encompassing various stress sources, this unified framework considerably simplifies and extends the modeling scope for granular dynamics, with potential applications to powder technology and natural flows.<br />Granular materials are abundant in nature, but we haven’t fully understood their rheological properties as complex interactions between particles are involved. Here, Vo et al. show that granular flows can be described by a generalized dimensionless number based on stress additivity.

Details

Language :
English
ISSN :
20411723
Database :
OpenAIRE
Journal :
Nature Communications, Nature Communications, Nature Publishing Group, 2020, 11 (1), ⟨10.1038/s41467-020-15263-3⟩, Nature Communications (2041-1723) (Nature Research), 2020-03, Vol. 11, N. 1, P. 1476 (8p.), Nature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
Accession number :
edsair.doi.dedup.....7ef927c7417856c7383176a29b71d464