Back to Search Start Over

Enhancement of Magnetic and Dielectric Properties of Ni0.25Cu0.25Zn0.50Fe2O4 Magnetic Nanoparticles through Non-Thermal Microwave Plasma Treatment for High-Frequency and Energy Storage Applications

Authors :
Muhammad Adnan Munir
Muhammad Yasin Naz
Shazia Shukrullah
Muhammad Tamoor Ansar
Muhammad Umar Farooq
Muhammad Irfan
Salim Nasar Faraj Mursal
Stanislaw Legutko
Jana Petrů
Marek Pagáč
Source :
Materials; Volume 15; Issue 19; Pages: 6890
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Spinel ferrites are widely investigated for their widespread applications in high-frequency and energy storage devices. This work focuses on enhancing the magnetic and dielectric properties of Ni0.25Cu0.25Zn0.50 ferrite series through non-thermal microwave plasma exposure under low-pressure conditions. A series of Ni0.25Cu0.25Zn0.50 ferrites was produced using a facile sol-gel auto-ignition approach. The post-synthesis plasma treatment was given in a low-pressure chamber by sustaining oxygen plasma with a microwave source. The structural formation of control and plasma-modified ferrites was investigated through X-ray diffraction analysis, which confirmed the formation of the fcc cubical structure of all samples. The plasma treatment did not affect crystallize size but significantly altered the surface porosity. The surface porosity increased after plasma treatment and average crystallite size was measured as about similar to 49.13 nm. Morphological studies confirmed changes in surface morphology and reduction in particle size on plasma exposure. The saturation magnetization of plasma-exposed ferrites was roughly 65% higher than the control. The saturation magnetization, remnant magnetization, and coercivity of plasma-exposed ferrites were calculated as 74.46 emu/g, 26.35 emu/g, and 1040 Oe, respectively. Dielectric characteristics revealed a better response of plasma-exposed ferrites to electromagnetic waves than control. These findings suggest that the plasma-exposed ferrites are good candidates for constructing high-frequency devices. Web of Science 15 19 art. no. 6890

Details

ISSN :
19961944
Volume :
15
Database :
OpenAIRE
Journal :
Materials
Accession number :
edsair.doi.dedup.....7edbc42d2a4f69066e02f8ac53c3db28