Back to Search Start Over

A Bayesian approach to modeling antimicrobial multidrug resistance

Authors :
Min Zhang
Annette M O'Connor
Chong Wang
Source :
PLoS ONE, Vol 16, Iss 12, p e0261528 (2021), PLoS ONE
Publication Year :
2021
Publisher :
Public Library of Science (PLoS), 2021.

Abstract

Multidrug resistance (MDR) has been a significant threat to public health and effective treatment of bacterial infections. Current identification of MDR is primarily based upon the large proportions of isolates resistant to multiple antibiotics simultaneously, and therefore is a belated evaluation. For bacteria with MDR, we expect to see strong correlations in both the quantitative minimum inhibitory concentration (MIC) and the binary susceptibility as classified by the pre-determined breakpoints. Being able to detect correlations from these two perspectives allows us to find multidrug resistant bacteria proactively. In this paper, we provide a Bayesian framework that estimates the resistance level jointly for antibiotics belonging to different classes with a Gaussian mixture model, where the correlation in the latent MIC can be inferred from the Gaussian parameters and the correlation in binary susceptibility can be inferred from the mixing weights. By augmenting the laboratory measurement with the latent MIC variable to account for the censored data, and by adopting the latent class variable to represent the MIC components, our model was shown to be accurate and robust compared with the current assessment of correlations. Applying the model to Salmonella heidelberg samples isolated from human participants in National Antimicrobial Resistance Monitoring System (NARMS) provides us with signs of joint resistance to Amoxicillin-clavulanic acid & Cephalothin and joint resistance to Ampicillin & Cephalothin. Large correlations estimated from our model could serve as a timely tool for early detection of MDR, and hence a signal for clinical intervention.

Details

ISSN :
19326203
Volume :
16
Database :
OpenAIRE
Journal :
PLOS ONE
Accession number :
edsair.doi.dedup.....7e8fa3c40c1948384cb9846b484b486a