Back to Search Start Over

ATMP derived cobalt-metaphosphate complex as highly active catalyst for oxygen reduction reaction

Authors :
Dan Shan
Serge Cosnier
Shengli Zhang
Lian-Hua Xu
Haibo Zeng
Xueji Zhang
Shiying Guo
Wenju Wang
Robert S. Marks
Département de Chimie Moléculaire - Biosystèmes Electrochimiques et Analytiques (DCM - BEA )
Département de Chimie Moléculaire (DCM)
Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Ben-Gurion University of the Negev (BGU)
Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Catalysis, Journal of Catalysis, Elsevier, 2020, 387, pp.129-137. ⟨10.1016/j.jcat.2020.04.014⟩
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Rational design and facile synthesis of highly active electrocatalysts with low cost for oxygen reduction reaction (ORR) are always of great challenge. Specifically, development of a new type of energy-saving materials with convenient method is regarded as the current bottleneck. Herein, an innovative strategy based on amino trimethylene phosphonic acid (ATMP) as chelating agent for cobalt-metaphosphate coordination polymer is reported to one-pot synthesis of a novel precursor in methanol for ORR electrocatalyst. Carbonization of the precursor at 900 °C at N2 atmosphere results in the feasible formation of cobalt metaphosphate based composite (Co(PO3)2/NC). A further step in the thermal cleavage at 650 °C at air for 4 h, Co(PO3)2/NC can be finally transformed into inorganic Co(PO3)2. Advanced spectroscopic techniques and density function theory (DFT) calculations are applied to confirm the main catalytically active center and the physical properties of Co(PO3)2/NC. This obtained Co(PO3)2/NC nanocomposite exhibits superior electrocatalysis to Co(PO3)2 with an enhanced onset potential (0.906 V vs. RHE) and diffusion limiting current (5.062 mA cm−2), which are roughly close to those of commercial 20% Pt/C (0.916 V, 5.200 mA cm−2).

Details

ISSN :
00219517 and 10902694
Volume :
387
Database :
OpenAIRE
Journal :
Journal of Catalysis
Accession number :
edsair.doi.dedup.....7e7b2706e8ab24e539d50cb01043bb0b
Full Text :
https://doi.org/10.1016/j.jcat.2020.04.014