Back to Search
Start Over
Point Set Registration With Similarity and Affine Transformations Based on Bidirectional KMPE Loss
- Source :
- IEEE Transactions on Cybernetics. 51:1678-1689
- Publication Year :
- 2021
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2021.
-
Abstract
- Robust point set registration is a challenging problem, especially in the cases of noise, outliers, and partial overlapping. Previous methods generally formulate their objective functions based on the mean-square error (MSE) loss and, hence, are only able to register point sets under predefined constraints (e.g., with Gaussian noise). This article proposes a novel objective function based on a bidirectional kernel mean ${p}$ -power error (KMPE) loss, to jointly deal with the above nonideal situations. KMPE is a nonsecond-order similarity measure in kernel space and shows a strong robustness against various noise and outliers. Moreover, a bidirectional measure is applied to judge the registration, which can avoid the ill-posed problem when a lot of points converges to the same point. In particular, we develop two effective optimization methods to deal with the point set registrations with the similarity and the affine transformations, respectively. The experimental results demonstrate the effectiveness of our methods.
- Subjects :
- Linear programming
Noise measurement
Computer science
020206 networking & telecommunications
Point set registration
02 engineering and technology
Similarity measure
Computer Science Applications
Human-Computer Interaction
Kernel (linear algebra)
symbols.namesake
Control and Systems Engineering
Robustness (computer science)
Gaussian noise
Outlier
0202 electrical engineering, electronic engineering, information engineering
symbols
020201 artificial intelligence & image processing
Affine transformation
Electrical and Electronic Engineering
Algorithm
Software
Information Systems
Subjects
Details
- ISSN :
- 21682275 and 21682267
- Volume :
- 51
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Cybernetics
- Accession number :
- edsair.doi.dedup.....7e5f3440bc267328f06ed0120c010219