Back to Search
Start Over
Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance
- Source :
- Frontiers in Marine Science, Vol 6 (2019), Frontiers in Marine Science, Frontiers in Marine Science, 2019, 6, ⟨10.3389/fmars.2019.00432⟩, Frontiers In Marine Science (2296-7745) (Frontiers Media Sa), 2019-08, Vol. 6, P. 432 (31p.), Frontiers in Marine Science, Frontiers Media, 2019, 6, ⟨10.3389/fmars.2019.00432⟩
- Publication Year :
- 2019
- Publisher :
- Frontiers Media S.A., 2019.
-
Abstract
- The energy radiated by the Earth toward space does not compensate the incoming radiation from the Sun leading to a small positive energy imbalance at the top of the atmosphere (0.4-1 Wm(-2)). This imbalance is coined Earth's Energy Imbalance (EEI). It is mostly caused by anthropogenic greenhouse gas emissions and is driving the current warming of the planet. Precise monitoring of EEI is critical to assess the current status of climate change and the future evolution of climate. But the monitoring of EEI is challenging as EEI is two orders of magnitude smaller than the radiation fluxes in and out of the Earth system. Over 93% of the excess energy that is gained by the Earth in response to the positive EEI accumulates into the ocean in the form of heat. This accumulation of heat can be tracked with the ocean observing system such that today, the monitoring of Ocean Heat Content (OHC) and its long-term change provide the most efficient approach to estimate EEI. In this community paper we review the current four state-of-the-art methods to estimate global OHC changes and evaluate their relevance to derive EEI estimates on different time scales. These four methods make use of: (1) direct observations of in situ temperature; (2) satellite-based measurements of the ocean surface net heat fluxes; (3) satellite-based estimates of the thermal expansion of the ocean and (4) ocean reanalyses that assimilate observations from both satellite and in situ instruments. For each method we review the potential and the uncertainty of the method to estimate global OHC changes. We also analyze gaps in the current capability of each method and identify ways of progress for the future to fulfill the requirements of EEI monitoring. Achieving the observation of EEI with sufficient accuracy will depend on merging the remote sensing techniques with in situ measurements of key variables as an integral part of the Ocean Observing System.
- Subjects :
- 0106 biological sciences
010504 meteorology & atmospheric sciences
lcsh:QH1-199.5
ocean surface fluxes
Climate change
Ocean Engineering
Aquatic Science
sea level
lcsh:General. Including nature conservation, geographical distribution
Oceanography
Atmospheric sciences
01 natural sciences
Atmosphere
ARGO
GRACE
altimetry
ocean heat content
ocean mass
14. Life underwater
Altimeter
lcsh:Science
Sea level
Argo
ComputingMilieux_MISCELLANEOUS
0105 earth and related environmental sciences
Water Science and Technology
Global and Planetary Change
010604 marine biology & hydrobiology
Earth Energy Imbalance
13. Climate action
Greenhouse gas
[SDE]Environmental Sciences
Environmental science
Satellite
lcsh:Q
Ocean heat content
Subjects
Details
- Language :
- English
- ISSN :
- 22967745
- Volume :
- 6
- Database :
- OpenAIRE
- Journal :
- Frontiers in Marine Science
- Accession number :
- edsair.doi.dedup.....7e4cd360d1eed2959ca8913892c35d8b
- Full Text :
- https://doi.org/10.3389/fmars.2019.00432/full