Back to Search
Start Over
Model of drug delivery to populations composed of two cell types
- Source :
- Journal of theoretical biology. 534
- Publication Year :
- 2021
-
Abstract
- The rate of drug delivery to cells and the subsequent rate of drug metabolism are dependent on the cell membrane permeability to the drug. In some cases, tissue may be composed of different types of cells that exhibit order of magnitude differences in their membrane permeabilities. This paper presents a brief review of the components of the tissue scale three-compartment pharmacokinetic model of drug delivery to single−cell−type populations. The existing model is extended to consider tissue composed of two different cell types. A case study is presented of infusion mediated delivery of doxorubicin to a tumor that is composed a drug reactive cell type and of a drug resistive cell type. The membrane permeabilities of the two cell types differ by an order of magnitude. A parametric investigation of the population composition is conducted and it is shown that the drug metabolism of the low permeability cells are negatively influenced by the fraction of the tissue composed of the permeable drug reactive cells. This is because when the population is composed mostly of drug permeable cells, the extracellular space is rapidly depleted of the drug. This has two compounding effects: (i) locally there is simply less drug available to the neighboring drug resistant cells, and (ii) the depletion of the drug from the extracellular space near the vessel-tissue interface leaves less drug to be transported to booth cell types farther away from the vessel.
- Subjects :
- Statistics and Probability
Drug
Cell type
Cell Membrane Permeability
media_common.quotation_subject
Population
Pharmacokinetic
Transport
Drug resistance
General Biochemistry, Genetics and Molecular Biology
Three compartment
Drug Delivery Systems
Pharmacokinetics
Neoplasms
Continuum
Extracellular
Chemotherapy
Humans
education
Binding model
media_common
education.field_of_study
General Immunology and Microbiology
Chemistry
Applied Mathematics
Drug delivery
Macroscale
Michaelis-Menten reaction
Porous
Biological Transport
General Medicine
Doxorubicin
Modeling and Simulation
Biophysics
General Agricultural and Biological Sciences
Drug metabolism
Subjects
Details
- ISSN :
- 10958541
- Volume :
- 534
- Database :
- OpenAIRE
- Journal :
- Journal of theoretical biology
- Accession number :
- edsair.doi.dedup.....7ddf8e28c2b3b78050fe06ee7eaf7a03