Back to Search Start Over

Model of drug delivery to populations composed of two cell types

Authors :
Giuseppe Pontrelli
Sid Becker
Filippo de Monte
Andrey V. Kuznetsov
Dan Zhao
Source :
Journal of theoretical biology. 534
Publication Year :
2021

Abstract

The rate of drug delivery to cells and the subsequent rate of drug metabolism are dependent on the cell membrane permeability to the drug. In some cases, tissue may be composed of different types of cells that exhibit order of magnitude differences in their membrane permeabilities. This paper presents a brief review of the components of the tissue scale three-compartment pharmacokinetic model of drug delivery to single−cell−type populations. The existing model is extended to consider tissue composed of two different cell types. A case study is presented of infusion mediated delivery of doxorubicin to a tumor that is composed a drug reactive cell type and of a drug resistive cell type. The membrane permeabilities of the two cell types differ by an order of magnitude. A parametric investigation of the population composition is conducted and it is shown that the drug metabolism of the low permeability cells are negatively influenced by the fraction of the tissue composed of the permeable drug reactive cells. This is because when the population is composed mostly of drug permeable cells, the extracellular space is rapidly depleted of the drug. This has two compounding effects: (i) locally there is simply less drug available to the neighboring drug resistant cells, and (ii) the depletion of the drug from the extracellular space near the vessel-tissue interface leaves less drug to be transported to booth cell types farther away from the vessel.

Details

ISSN :
10958541
Volume :
534
Database :
OpenAIRE
Journal :
Journal of theoretical biology
Accession number :
edsair.doi.dedup.....7ddf8e28c2b3b78050fe06ee7eaf7a03