Back to Search Start Over

AB569, a non-toxic combination of acidified nitrite and EDTA, is effective at killing the notorious Iraq/Afghanistan combat wound pathogens, multi-drug resistant Acinetobacter baumannii and Acinetobacter spp

Authors :
Joel E. Mortensen
Latha Satish
Daniel J. Hassett
Luis A. Actis
Jay A. Johannigman
Michael J. Schurr
Cameron T. McDaniel
Edwin Kamau
Warunya Panmanee
Amy L. Bogue
Nalinikanth Kotagiri
Source :
PLoS ONE, Vol 16, Iss 3, p e0247513 (2021), PLoS ONE
Publication Year :
2021
Publisher :
Public Library of Science (PLoS), 2021.

Abstract

Multi-drug resistant (MDR) Acinetobacter baumannii (Ab) and Acinetobacter spp. present monumental global health challenges. These organisms represent model Gram-negative pathogens with known antibiotic resistance and biofilm-forming properties. Herein, a novel, nontoxic biocide, AB569, consisting of acidified nitrite (A-NO2-) and ethylenediaminetetraacetic acid (EDTA), demonstrated bactericidal activity against all Ab and Acinetobacter spp. strains, respectively. Average fractional inhibitory concentrations (FICs) of 0.25 mM EDTA plus 4 mM A-NO2- were observed across several clinical reference and multiple combat wound isolates from the Iraq/Afghanistan wars. Importantly, toxicity testing on human dermal fibroblasts (HDFa) revealed an upper toxicity limit of 3 mM EDTA plus 64 mM A-NO2-, and thus are in the therapeutic range for effective Ab and Acinetobacter spp. treatment. Following treatment of Ab strain ATCC 19606 with AB569, quantitative PCR analysis of selected genes products to be responsive to AB569 revealed up-regulation of iron regulated genes involved in siderophore production, siderophore biosynthesis non-ribosomal peptide synthetase module (SBNRPSM), and siderophore biosynthesis protein monooxygenase (SBPM) when compared to untreated organisms. Taken together, treating Ab infections with AB569 at inhibitory concentrations reveals the potential clinical application of preventing Ab from gaining an early growth advantage during infection followed by extensive bactericidal activity upon subsequent exposures.

Details

Language :
English
ISSN :
19326203
Volume :
16
Issue :
3
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....7ddaccc9e28fba233b003ca8a68edb85