Back to Search Start Over

Effects of N-acetyl-cysteine on the survival and regeneration of sural sensory neurons in adult rats

Authors :
Dag Welin
Jan-Olof Kellerth
Mikael Wiberg
Liudmila N. Novikova
Lev N. Novikov
Source :
Brain research. 1287
Publication Year :
2009

Abstract

Microsurgical reconstruction of injured peripheral nerves often results in limited functional recovery. One contributing factor is the retrograde neuronal degeneration of sensory neurons in the dorsal root ganglia (DRG) and of motor neurons in the spinal cord. The present study investigates the neuroprotective and growth-promoting effects of N-acetyl-cysteine (NAC) on sensory DRG neurons and spinal motoneurons after sciatic axotomy and nerve grafting in adult rats. Sciatic axotomy and nerve grafting were performed at 1 week after sural DRG neurons and motoneurons were retrogradely labeled with the fluorescent tracer Fast Blue. To assess the efficacy of axonal regeneration, a second fluorescent dye Fluoro-Ruby was applied distal to the graft at 12 weeks after nerve repair. At 8-13 weeks after axotomy, only 52-56% of the sural sensory neurons remained in the lumbar DRG, while the majority of motoneurons survived the sciatic nerve injury. Nerve grafting alone or continuous intrathecal NAC treatment (2.4 mg/day) improved survival of sural DRG neurons. Combined treatment with nerve graft and NAC had significant additive effect on neuronal survival and also increased the number of sensory neurons regenerating across the graft. However, NAC treatment neither affected the number of regenerating motoneurons nor the number of myelinated axons in the nerve graft or in the distal nerve stump. The present results demonstrate that NAC provides a highly significant effect of neuroprotection in an animal nerve injury model and that combination with nerve grafting further attenuates retrograde cell death and promotes regeneration of sensory neurons.

Details

ISSN :
18726240
Volume :
1287
Database :
OpenAIRE
Journal :
Brain research
Accession number :
edsair.doi.dedup.....7dd85fa9e9893bd7780801d115531d15