Back to Search Start Over

sAPPalpha enhances the transdifferentiation of adult bone marrow progenitor cells to neuronal phenotypes

Authors :
Steven W. Barger
Wen Fu Thomas Lai
Anne M. Cataldo
Chun Wei David Chen
Rene M. Boiteau
Source :
Current Alzheimer research. 3(1)
Publication Year :
2006

Abstract

The remediation of neurodegeneration and cognitive decline in Alzheimer's Disease (AD) remains a challenge to basic scientists and clinicians. It has been suggested that adult bone marrow stem cells can transdifferentiate into different neuronal phenotypes. Here we demonstrate that the alpha-secretase-cleaved fragment of the amyloid precursor protein (sAPPalpha), a potent neurotrophic factor, potentiates the nerve growth factor (NGF)/retinoic acid (RA) induced transdifferentiation of bone marrow-derived adult progenitor cells (MAPCs) into neural progenitor cells and, more specifically, enhances their terminal differentiation into a cholinergic-like neuronal phenotype. The addition of sAPPalpha to NGF/RA-stimulated MAPCs resulted in their conversion to neuronal-like cells as evidenced by the extension of neurites and the appearance of immature synaptic complexes. MAPCs differentiated in the presence of sAPPalpha and NGF/RA exhibited a 40% to as much as 75% increase in neuronal proteins including NeuN, beta-tubulin III, NFM, and synaptophysin, compared to MAPCs differentiated by NGF/RA alone. This process was accompanied by an increase in the levels of choline acetyltransferase, a marker of cholinergic neurons, compared to those of GABAergic and dopaminergic neuronal subtypes. MAPCs immunopositive for sAPPalpha were identified within the septohippocampal system of transgenic PS/APP mice injected intravenously with sAPPalpha-transfected MAPCs and found in close proximity to the cerebral vasculature. Given that in AD cholinergic neurons are severely vulnerable to neurodegeneration and that the levels of sAPPalpha are significantly reduced, these findings suggest the combined use of sAPPalpha and MAPCs offers a new and potentially powerful therapeutic strategy for AD treatment.

Details

ISSN :
15672050
Volume :
3
Issue :
1
Database :
OpenAIRE
Journal :
Current Alzheimer research
Accession number :
edsair.doi.dedup.....7dd3f613d024e3f858af76b9416270f4