Back to Search Start Over

Evaluating and Optimizing Opportunity Fast-Charging Schedules in Transit Battery Electric Bus Networks

Authors :
Pieter L. van den Berg
Ayman Abdelwahed
Wolfgang Ketter
John Collins
Tobias Brandt
Department of Technology and Operations Management
Business Intelligence
Source :
Transportation Science, 54(6), 1601-1615. INFORMS Institute for Operations Research and the Management Sciences
Publication Year :
2020
Publisher :
INFORMS Institute for Operations Research and the Management Sciences, 2020.

Abstract

Public transport operators (PTOs) increasingly face a challenging problem in switching from conventional diesel to more sustainable battery electric buses (BEBs). In this study, we optimize the opportunity fast-charging schedule of transit BEB networks in order to minimize the charging costs and the impact on the grid. Two mixed-integer linear programming (MILP) formulations that use different discretization approaches are developed and compared. Discrete-Time Optimization (DTO) resembles a time-expanded network that discretizes the time and decisions to equal discrete slots. Discrete-Event Optimization (DEO) discretizes the time and decisions into nonuniform slots based on arrival and departure events in the network. In addition to the DEO’s higher practicability, the comparative computational study carried out on the transit-bus network in the city of Rotterdam, Netherlands, shows that the DEO is superior to the DTO in terms of computational performance. To show the potential benefits of the optimal schedule, it is compared with two reference common-sense greedy strategies: First-in-First-Served and Lowest-Charge-Highest-Priority.

Details

Language :
English
ISSN :
15265447 and 00411655
Volume :
54
Issue :
6
Database :
OpenAIRE
Journal :
Transportation Science
Accession number :
edsair.doi.dedup.....7dc80c56235a87ef432dfc995727707d