Back to Search Start Over

Tailored Electronic Structure and Optical Properties of Conjugated Systems through Aggregates and Dipole–Dipole Interactions

Authors :
Andriy Zhugayevych
Young-Shin Park
Cheng-Yu Kuo
Hsing-Lin Wang
Sergei Tretiak
Jennifer S. Martinez
Seungho Kim
Olena Postupna
Jongwook Park
Young Il Park
Source :
ACS Applied Materials & Interfaces. 5:4685-4695
Publication Year :
2013
Publisher :
American Chemical Society (ACS), 2013.

Abstract

A series of PPVO (p-phenylene vinylene oligomer) derivatives with functional groups of varying electronegativity were synthesized via the Horner-Wadsworth-Emmons reaction. Subtle changes in the end group functionality significantly impact the molecular electronic and optical properties of the PPVOs, resulting in broadly tunable and efficient UV absorption and photoluminescence spectra. Of particular interest is the NO2-substituted PPVO which exhibits photoluminescence color ranging from the blue to the red, thus encompassing the entire visible spectrum. Our experimental study and electronic structure calculations suggest that the formation of aggregates and strong dipole-dipole solute-solvent interactions are responsible for the observed strong solvatochromism. Experimental and theoretical results for the NH2-, H-, and NO2-substituted PPVOs suggest that the stabilization of ground or excited state dipoles leads to the blue or red shift of the optical spectra. The electroluminescence (EL) spectra of H-, COOH-, and NO2-PPVO have maxima at 487, 518, and 587 nm, respectively, in the OLED device. This trend in the EL spectra is in excellent agreement with the end group-dependent PL spectra of the PPVO thin-films.

Details

ISSN :
19448252 and 19448244
Volume :
5
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....7d7b6efb4b8a4a4897f0f1ebf0925d92
Full Text :
https://doi.org/10.1021/am400766w