Back to Search Start Over

Protein sieving characteristics of sub-20-nm pore size filters at varying ionic strength during nanofiltration of Coagulation Factor IX

Authors :
Kenneth T. Shitanishi
Clint J. Winkler
Steven W. Herring
Nuria Jorba
Source :
Biologicals. 41:176-183
Publication Year :
2013
Publisher :
Elsevier BV, 2013.

Abstract

Nanofiltration assures that protein therapeutics are free of adventitious agents such as viruses. Nanofilter pores must allow passage of protein drugs but be small enough to retain viruses. Five nanofilters have been evaluated to identify those that can be used interchangeably to yield a high purity Coagulation Factor IX product. When product preparations prior to nanofiltration were analyzed using electrophoresis, Western blot, liquid chromatography - tandem mass spectrometry and size exclusion HPLC, factor IX, inter - α - trypsin inhibitor and C4b binding protein (C4BP) were observed. C4BP was removed from product by all five nanofilters when nanofiltration was performed at physiological ionic strength. However, at high ionic strength, C4BP was removed by only two nanofilters. HPLC indicated that the Stokes radius of C4BP was larger at low ionic strength than at high ionic strength. The results suggest that C4BP exists in an open conformation at physiological ionic strength and is removed by nanofiltration whereas, at high ionic strength, the protein collapses to an extent that allows passage through some nanofilters. Manufacturers should be aware that protein contaminants in other nanofiltered protein drugs could behave similarly and conditions of nanofiltration must be evaluated to ensure consistent product purity.

Details

ISSN :
10451056
Volume :
41
Database :
OpenAIRE
Journal :
Biologicals
Accession number :
edsair.doi.dedup.....7d70ac9012e27e7c817bafea77629535
Full Text :
https://doi.org/10.1016/j.biologicals.2013.01.001