Back to Search Start Over

Transcriptomic analysis reveals the genes involved in tetrodotoxin (TTX) accumulation, translocation, and detoxification in the pufferfish Takifugu rubripes

Authors :
Hanyuan Zhang
Peizhen Li
Biyin Wu
Jilun Hou
Jiangong Ren
Youxiu Zhu
Jian Xu
Fei Si
Zhaohui Sun
Xia Liu
Source :
Chemosphere. 303(Pt 1)
Publication Year :
2022

Abstract

Tetrodotoxin (TTX) is a potent marine neurotoxin that exists in a variety of aquatic and terrestrial organisms. Pufferfish in different habitats show great variation in their TTX contents. Exploring the genes involved in TTX metabolism could contribute to our understanding of the molecular mechanisms underlying TTX accumulation, translocation, and detoxification in pufferfish. In this study, transcriptomic analysis was used to identify the functional genes related to TTX metabolism in the blood, liver, and muscle of the toxic and non-toxic tiger puffer (Takifugu rubripes). A total of 6101 differentially expressed genes (DEGs) were obtained after transcriptomic analysis; of these, 2401 were identified in the blood, 2262 in the liver, and 1438 in the muscle. After enrichment analysis, fourteen genes encoding glutathione S-transferases (GSTs), glutathione peroxidase (GPx), thioredoxins (TXNs), superoxide dismutase (SOD), ATP-binding cassettes (ABCs), apolipoproteins (APOs), inhibitors of apoptosis protein (IAP), and solute carrier (SLC), which are mainly antioxidant enzymes, membrane transporters, or anti-apoptotic factors, were revealed in the blood. Thirty-six genes encoding SLCs, ABCs, long-chain-fatty-acid-CoA ligases (ACSLs), interleukin 6 cytokine family signal transducer (IL6ST), endoplasmic reticulum (ER), and heat shock protein family A (Hsp70) were involved in transmembrane transporter activity and innate immune response. Notably, a large number of slc genes were found to play critical and diverse roles in TTX accumulation and translocation in the liver of T. rubripes. Nine genes from the slc, hsp70, complement C5 (c5), acsl, er, and serpin peptidase inhibitor (serpin) gene families were found to participate in the regulation of protein processing and anti-apoptosis. These results reflect the diverse functions of genes closely related to TTX accumulation, translocation, and detoxification in T. rubripes.

Details

ISSN :
18791298
Volume :
303
Issue :
Pt 1
Database :
OpenAIRE
Journal :
Chemosphere
Accession number :
edsair.doi.dedup.....7d223a6bf913595118fc683a73365b0f