Back to Search Start Over

Stochastic equation of fragmentation and branching processes related to avalanches

Authors :
Oana Lupaşcu
Madalina Deaconu
Lucian Beznea
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
TO Simulate and CAlibrate stochastic models (TOSCA)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Statistical Physics, Journal of Statistical Physics, Springer Verlag, 2016, 162 (4), pp.824-841. ⟨10.1007/s10955-015-1432-5⟩, Journal of Statistical Physics, 2016, 162 (4), pp.824-841. ⟨10.1007/s10955-015-1432-5⟩
Publication Year :
2015

Abstract

We give a stochastic model for the fragmentation phase of a snow avalanche. We construct a fragmentation-branching process related to the avalanches, on the set of all fragmentation sizes introduced by J. Bertoin. A fractal property of this process is emphasized. We also establish a specific stochastic equation of fragmentation. It turns out that specific branching Markov processes on finite configurations of particles with sizes bigger than a strictly positive threshold are convenient for describing the continuous time evolution of the number of the resulting fragments. The results are obtained by combining analytic and probabilistic potential theoretical tools.<br />17 pages

Details

Language :
English
ISSN :
00224715 and 15729613
Database :
OpenAIRE
Journal :
Journal of Statistical Physics, Journal of Statistical Physics, Springer Verlag, 2016, 162 (4), pp.824-841. ⟨10.1007/s10955-015-1432-5⟩, Journal of Statistical Physics, 2016, 162 (4), pp.824-841. ⟨10.1007/s10955-015-1432-5⟩
Accession number :
edsair.doi.dedup.....7d153e6bfd677fd88e0d532ae23f33bb
Full Text :
https://doi.org/10.1007/s10955-015-1432-5⟩