Back to Search Start Over

Balance of Emission and Dynamical Controls on Ozone During the Korea-United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation

Authors :
Kengo Sudo
Henk Eskes
Dejian Fu
Masayuki Takigawa
Takashi Sekiya
Jerome Barre
K. F. Boersma
Louisa K. Emmons
Benjamin Gaubert
Susan S. Kulawik
Koji Ogochi
T. Walker
Kevin W. Bowman
Yugo Kanaya
Kazuyuki Miyazaki
Anne M. Thompson
Source :
Journal of Geophysical Research: Atmospheres, 124(1), 387-413, Journal of Geophysical Research: Atmospheres 124 (2019) 1, Journal of Geophysical Research. Atmospheres
Publication Year :
2019

Abstract

Global multiconstituent concentration and emission fields obtained from the assimilation of the satellite retrievals of ozone, CO, NO2, HNO3, and SO2 from the Ozone Monitoring Instrument (OMI), Global Ozone Monitoring Experiment 2, Measurements of Pollution in the Troposphere, Microwave Limb Sounder, and Atmospheric Infrared Sounder (AIRS)/OMI are used to understand the processes controlling air pollution during the Korea‐United States Air Quality (KORUS‐AQ) campaign. Estimated emissions in South Korea were 0.42 Tg N for NOx and 1.1 Tg CO for CO, which were 40% and 83% higher, respectively, than the a priori bottom‐up inventories, and increased mean ozone concentration by up to 7.5 ± 1.6 ppbv. The observed boundary layer ozone exceeded 90 ppbv over Seoul under stagnant phases, whereas it was approximately 60 ppbv during dynamical conditions given equivalent emissions. Chemical reanalysis showed that mean ozone concentration was persistently higher over Seoul (75.10 ± 7.6 ppbv) than the broader KORUS‐AQ domain (70.5 ± 9.2 ppbv) at 700 hPa. Large bias reductions (>75%) in the free tropospheric OH show that multiple‐species assimilation is critical for balanced tropospheric chemistry analysis and emissions. The assimilation performance was dependent on the particular phase. While the evaluation of data assimilation fields shows an improved agreement with aircraft measurements in ozone (to less than 5 ppbv biases), CO, NO2, SO2, PAN, and OH profiles, lower tropospheric ozone analysis error was largest at stagnant conditions, whereas the model errors were mostly removed by data assimilation under dynamic weather conditions. Assimilation of new AIRS/OMI ozone profiles allowed for additional error reductions, especially under dynamic weather conditions. Our results show the important balance of dynamics and emissions both on pollution and the chemical assimilation system performance.<br />Key Points Multiconstituent data assimilation during KORUS‐AQ showed that emissions in South Korea were 0.42 Tg N for NOx and 1.1 Tg CO for COThese emissions were 40% and 83% higher, respectively, than the a priori bottom‐up inventories and increased ozone by up to 7.5 ± 1.6 ppbvMean ozone concentration was persistently higher over Seoul (75.1 ± 7.6 ppbv) than the broader KORUS‐AQ domain (70.5 ± 9.2 ppbv) at 700 hPa

Details

Language :
English
ISSN :
2169897X
Volume :
124
Issue :
1
Database :
OpenAIRE
Journal :
Journal of Geophysical Research: Atmospheres
Accession number :
edsair.doi.dedup.....7cf7a5bc6e1fa816a449657b435bdd80