Back to Search Start Over

Riesz transforms and multipliers for the Bessel-Grushin operator

Authors :
Kishin Sadarangani
Víctor Almeida
Jorge J. Betancor
Alejandro J. Castro
Source :
Journal d'Analyse Mathématique. 128:51-106
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

We establish that the spectral multiplier $\frak{M}(G_{\alpha})$ associated to the differential operator $$ G_{\alpha}=- \Delta_x +\sum_{j=1}^m{{\alpha_j^2-1/4}\over{x_j^2}}-|x|^2 \Delta_y \; \text{on} (0,\infty)^m \times \R^n,$$ which we denominate Bessel-Grushin operator, is of weak type $(1,1)$ provided that $\frak{M}$ is in a suitable local Sobolev space. In order to do this we prove a suitable weighted Plancherel estimate. Also, we study $L^p$-boundedness properties of Riesz transforms associated to $G_{\alpha}$, in the case $n=1$.<br />Comment: 33 pages

Details

ISSN :
15658538 and 00217670
Volume :
128
Database :
OpenAIRE
Journal :
Journal d'Analyse Mathématique
Accession number :
edsair.doi.dedup.....7cf3f9a96f9a9fcea448a7d4448baf20