Back to Search
Start Over
Riesz transforms and multipliers for the Bessel-Grushin operator
- Source :
- Journal d'Analyse Mathématique. 128:51-106
- Publication Year :
- 2016
- Publisher :
- Springer Science and Business Media LLC, 2016.
-
Abstract
- We establish that the spectral multiplier $\frak{M}(G_{\alpha})$ associated to the differential operator $$ G_{\alpha}=- \Delta_x +\sum_{j=1}^m{{\alpha_j^2-1/4}\over{x_j^2}}-|x|^2 \Delta_y \; \text{on} (0,\infty)^m \times \R^n,$$ which we denominate Bessel-Grushin operator, is of weak type $(1,1)$ provided that $\frak{M}$ is in a suitable local Sobolev space. In order to do this we prove a suitable weighted Plancherel estimate. Also, we study $L^p$-boundedness properties of Riesz transforms associated to $G_{\alpha}$, in the case $n=1$.<br />Comment: 33 pages
- Subjects :
- General Mathematics
010102 general mathematics
Mathematical analysis
Mathematics::Classical Analysis and ODEs
Weak type
Differential operator
01 natural sciences
Combinatorics
Multiplier (Fourier analysis)
Sobolev space
Riesz transform
symbols.namesake
Mathematics - Classical Analysis and ODEs
0103 physical sciences
Classical Analysis and ODEs (math.CA)
FOS: Mathematics
42C, 42C10, 43A90
symbols
010307 mathematical physics
0101 mathematics
Analysis
Bessel function
Mathematics
Subjects
Details
- ISSN :
- 15658538 and 00217670
- Volume :
- 128
- Database :
- OpenAIRE
- Journal :
- Journal d'Analyse Mathématique
- Accession number :
- edsair.doi.dedup.....7cf3f9a96f9a9fcea448a7d4448baf20