Back to Search Start Over

Thermodynamics of water confined in porous calcium-silicate-hydrates

Authors :
Patrick Bonnaud
K. J. Van Vliet
Roland J.-M. Pellenq
Qing Ji
Benoit Coasne
Centre Interdisciplinaire de Nanoscience de Marseille (CINaM)
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Massachusetts Institute of Technology (MIT)
Inspur Group
State Key Laboratory of High-End Server & Storage Technology
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM)
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
U.S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection and Disaster Management Division. MIT Concrete Sustainability Hub, supported by the Portland Cement Association (PCA) and Ready Mix Concrete (RMC) Research & Education Foundation. MIT-France foundation (MIT Seed-Fund). CINaM-CNRS laboratory
Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Langmuir, Langmuir, American Chemical Society, 2012, 28 (31), pp.11422-11432. ⟨10.1021/la301738p⟩, Langmuir, 2012, 28 (31), pp.11422-11432. ⟨10.1021/la301738p⟩
Publication Year :
2012

Abstract

International audience; Water within pores of cementitious materials plays a crucial role in the damage processes of cement pastes, particularly in the binding material comprising calcium-silicatehydrates (C−S−H). Here, we employed Grand Canonical Monte Carlo simulations to investigate the properties of water confined at ambient temperature within and between C−S−H nanoparticles or "grains" as a function of the relative humidity (%RH). We address the effect of water on the cohesion of cement pastes by computing fluid internal pressures within and between grains as a function of %RH and intergranular separation distance, from 1 to 10 Å. We found that, within a C−S−H grain and between C−S−H grains, pores are completely filled with water for %RH larger than 20%. While the cohesion of the cement paste is mainly driven by the calcium ions in the C−S−H, water facilitates a disjoining behavior inside a C−S−H grain. Between C−S−H grains, confined water diminishes or enhances the cohesion of the material depending on the intergranular distance. At very low %RH, the loss of water increases the cohesion within a C−S−H grain and reduces the cohesion between C−S−H grains. These findings provide insights into the behavior of C−S−H in dry or high-temperature environments, with a loss of cohesion between C−S−H grains due to the loss of water content. Such quantification provides the necessary baseline to understand cement paste damaging upon extreme thermal, mechanical, and salt-rich environments.

Details

ISSN :
15205827 and 07437463
Volume :
28
Issue :
31
Database :
OpenAIRE
Journal :
Langmuir : the ACS journal of surfaces and colloids
Accession number :
edsair.doi.dedup.....7ce50a8807dde344d6f441efde561dd2
Full Text :
https://doi.org/10.1021/la301738p⟩