Back to Search
Start Over
Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the Netherlands
- Source :
- Soil, 2(4), 537-549. Copernicus GmbH, Soil, SOIL, Vol 2, Iss 4, Pp 537-549 (2016)
- Publication Year :
- 2016
- Publisher :
- Copernicus GmbH, 2016.
-
Abstract
- Soil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of, e.g., nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift sands and cover sands. The study site is located at Bedafse Bergen (southeastern Netherlands) in a 200-year-old oak stand. A recent Podzol developed on drift sand covering a Plaggic Anthrosol that was piled up on a relict Podzol on Late Glacial eolian cover sand. Root-free soil and sediment samples, collected in 10–15 cm depth increments, were subjected to a multi-proxy physical and geochemical approach. The Plaggic Anthrosol revealed low bulk density and high phosphorous and organic carbon contents, whereas the relict Podzol was characterized by high iron and aluminum contents. Frequencies of fine (diameter ≤ 2 mm) and medium roots (2–5 mm) were determined on horizontal levels and the profile wall for a detailed pseudo-three-dimensional insight. On horizontal levels, living roots were most abundant in the uppermost part of the relict Podzol with ca. 4450 and 220 m−2, significantly exceeding topsoil root abundances. Roots of oak trees thus benefited from the favorable growth conditions in the nutrient-rich Plaggic Anthrosol, whereas increased compactness and high aluminum contents of the relict Podzol caused a strong decrease of roots. The approach demonstrated the benefit of comprehensive root investigation to support interpretation of soil profiles, as fine roots can be significantly underestimated when quantified at the profile wall. The possible rooting of soil parent material and paleosols long after their burial confirmed recent studies on the potential influence of rooting to overprint sediment–(paleo)soil sequences of various ages, sedimentary and climatic settings. Potential consequences of deep rooting for terrestrial deep carbon stocks, located to a relevant part in paleosols, remain largely unknown and require further investigation.
- Subjects :
- 2. Zero hunger
Total organic carbon
lcsh:GE1-350
Topsoil
010504 meteorology & atmospheric sciences
lcsh:QE1-996.5
Parent material
Soil Science
Sediment
Soil science
04 agricultural and veterinary sciences
15. Life on land
01 natural sciences
Paleosol
Podzol
lcsh:Geology
Nutrient
040103 agronomy & agriculture
0401 agriculture, forestry, and fisheries
Anthrosol
Geology
lcsh:Environmental sciences
0105 earth and related environmental sciences
Subjects
Details
- Language :
- English
- ISSN :
- 2199398X and 21993971
- Volume :
- 2
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Soil
- Accession number :
- edsair.doi.dedup.....7cc8a70337d77e9abaa5b4c364d59f24