Back to Search
Start Over
Electron localization in rod-shaped triicosahedral gold nanocluster
- Source :
- Proceedings of the National Academy of Sciences. 114
- Publication Year :
- 2017
- Publisher :
- Proceedings of the National Academy of Sciences, 2017.
-
Abstract
- Atomically precise gold nanocluster based on linear assembly of repeating icosahedrons (clusters of clusters) is a unique type of linear nanostructure, which exhibits strong near-infrared absorption as their free electrons are confined in a one-dimensional quantum box. Little is known about the carrier dynamics in these nanoclusters, which limit their energy-related applications. Here, we reported the observation of exciton localization in triicosahedral Au37 nanoclusters (0.5 nm in diameter and 1.6 nm in length) by measuring femtosecond and nanosecond carrier dynamics. Upon photoexcitation to S1 electronic state, electrons in Au37 undergo ∼100-ps localization from the two vertexes of three icosahedrons to one vertex, forming a long-lived S1* state. Such phenomenon is not observed in Au25 (dimer) and Au13 (monomer) consisting of two and one icosahedrons, respectively. We have further observed temperature dependence on the localization process, which proves it is thermally driven. Two excited-state vibration modes with frequencies of 20 and 70 cm−1 observed in the kinetic traces are assigned to the axial and radial breathing modes, respectively. The electron localization is ascribed to the structural distortion of Au37 in the excited state induced by the strong coherent vibrations. The observed electron localization phenomenon provides unique physical insight into one-dimensional gold nanoclusters and other nanostructures, which will advance their applications in solar-energy storage and conversion.
- Subjects :
- Free electron model
Multidisciplinary
Materials science
Exciton
02 engineering and technology
Electron
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
Molecular physics
Electron localization function
0104 chemical sciences
Nanoclusters
Photoexcitation
Condensed Matter::Materials Science
PNAS Plus
Excited state
Femtosecond
Physics::Atomic and Molecular Clusters
Atomic physics
0210 nano-technology
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 114
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....7c94d95f49eec79203b29816c932687e
- Full Text :
- https://doi.org/10.1073/pnas.1704699114