Back to Search Start Over

Mixed and Nitsche's discretizations of Coulomb frictional contact-mechanics for mixed dimensional poromechanical models

Authors :
Mohamed LAAZIRI
Laurence Beaude
Franz Chouly
Roland Masson
Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)
Institut de Mathématiques de Bourgogne [Dijon] (IMB)
Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
COmplex Flows For Energy and Environment (COFFEE)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Bureau de Recherches Géologiques et Minières (BRGM)
ANDRA
I-Site BFC project NAANoD
ANR-17-EURE-0002,EIPHI,Ingénierie et Innovation par les sciences physiques, les savoir-faire technologiques et l'interdisciplinarité(2017)
Source :
Computer Methods in Applied Mechanics and Engineering, Computer Methods in Applied Mechanics and Engineering, 2023, 213, pp.116124. ⟨10.1016/j.cma.2023.116124⟩
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; This work deals with the discretization of single-phase Darcy flows in fractured and deformable porous media, including frictional contact at the matrix-fracture interfaces. Fractures are described as a network of planar surfaces leading to so-called mixed-dimensional models. Small displacements and a linear poro-elastic behavior are considered in the matrix. One key difficulty to simulate such coupled poro-mechanical models is related to the formulation and discretization of the contact mechanical sub-problem. Our starting point is based on the mixed formulation using facewise constant Lagrange multipliers along the fractures representing normal and tangential stresses. This is a natural choice for the discretization of the contact dual cone in order to account for complex fracture networks with corners and intersections. It leads to local expressions of the contact conditions and to efficient semi-smooth nonlinear solvers. On the other hand, such a mixed formulation requires to satisfy a compatibility condition between the discrete spaces restricting the choice of the displacement space and potentially leading to sub-optimal accuracy. This motivates the investigation of two alternative formulations based either on a stabilized mixed formulation or on the Nitsche's method. These three types of formulations are first investigated theoritically in order to enhance their connections. Then, they are compared numerically in terms of accuracy and nonlinear convergence. The sensitivity to the choice of the formulation parameters is also investigated. Several 2D test cases are considered with various fracture networks using both P1 and P2 conforming Finite Element discretizations of the displacement field and an Hybrid Finite Volume discretization of the mixed-dimensional Darcy flow model.

Details

Language :
English
ISSN :
00457825
Database :
OpenAIRE
Journal :
Computer Methods in Applied Mechanics and Engineering, Computer Methods in Applied Mechanics and Engineering, 2023, 213, pp.116124. ⟨10.1016/j.cma.2023.116124⟩
Accession number :
edsair.doi.dedup.....7c93b1d83d9ebc700603d003d4a43ab8
Full Text :
https://doi.org/10.1016/j.cma.2023.116124⟩