Back to Search Start Over

Hierarchical Microstructure Informed Tractography

Authors :
Laurent Petit
Gabriel Girard
Simona Schiavi
Mario Ocampo-Pineda
Alessandro Daducci
François Rheault
Maxime Descoteaux
Department of Computer Science [Verona] (UNIVR | DI)
Università degli studi di Verona = University of Verona (UNIVR)
Sherbrooke Connectivity Imaging Lab [Sherbrooke] (SCIL)
Département d'informatique [Sherbrooke] (UdeS)
Faculté des sciences [Sherbrooke] (UdeS)
Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS)-Faculté des sciences [Sherbrooke] (UdeS)
Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS)
Center for Biomedical Imaging [Lausanne] (CIBM)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Université de Lausanne = University of Lausanne (UNIL)
Signal Processing Laboratory [Lausanne] (LTS5)
Groupe d'imagerie neurofonctionnelle (GIN)
Institut des Maladies Neurodégénératives [Bordeaux] (IMN)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
University of Verona (UNIVR)
University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut des Maladies Neurodégénératives [Bordeaux] (IMN)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
Source :
Brain connectivity, Brain connectivity, 2021, 11 (2), pp.75-88. ⟨10.1089/brain.2020.0907⟩, Brain connectivity, Mary Ann Liebert, Inc. publishers, 2021, 11 (2), pp.75-88. ⟨10.1089/brain.2020.0907⟩
Publication Year :
2021

Abstract

Background: Tractography uses diffusion magnetic resonance imaging to noninvasively infer the macroscopic pathways of white matter fibers and it is the only available technique to probe in vivo the structural connectivity of the brain. However, despite this unique and compelling ability and its wide range of possible neurological applications, tractography is still limited, lacks anatomical precision, and suffers from a serious sensitivity/specificity trade-off. For this reason, in the past few years, tractography postprocessing techniques have emerged and proved effective for improving the quality of the reconstructions. Among them, the Convex Optimization Modeling for Microstructure Informed Tractography formulation allows incorporating the anatomical prior that fibers are naturally organized in fascicles, and has obtained exceptional results in increasing the accuracy of the estimated tractograms.<br />Methods: We propose an extension to this idea and introduce a multilevel grouping of the streamlines to capture the white matter arrangement in fascicles and subfascicles. We tested our proposed formulation in synthetic and in vivo data.<br />Results: Our experiments show that using multiple levels allows considering information about the white matter organization more adequately and helps to improve further the accuracy of the resulting tractograms.<br />Conclusion: This new formulation represents a further important step toward a more accurate structural connectivity estimation.

Details

Language :
English
ISSN :
21580014 and 21580022
Database :
OpenAIRE
Journal :
Brain connectivity, Brain connectivity, 2021, 11 (2), pp.75-88. ⟨10.1089/brain.2020.0907⟩, Brain connectivity, Mary Ann Liebert, Inc. publishers, 2021, 11 (2), pp.75-88. ⟨10.1089/brain.2020.0907⟩
Accession number :
edsair.doi.dedup.....7c933e1f9053ebeb25323ebf2f7f6a3e
Full Text :
https://doi.org/10.1089/brain.2020.0907⟩