Back to Search Start Over

Fast Self-Supervised Clustering With Anchor Graph

Authors :
Feiping Nie
Zhenyu Ma
Xuelong Li
Jingyu Wang
Source :
IEEE Transactions on Neural Networks and Learning Systems. 33:4199-4212
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

Benefit from avoiding the utilization of labeled samples, which are usually insufficient in the real world, unsupervised learning has been regarded as a speedy and powerful strategy on clustering tasks. However, clustering directly from primal data sets leads to high computational cost, which limits its application on large-scale and high-dimensional problems. Recently, anchor-based theories are proposed to partly mitigate this problem and field naturally sparse affinity matrix, while it is still a challenge to get excellent performance along with high efficiency. To dispose of this issue, we first presented a fast semisupervised framework (FSSF) combined with a balanced K -means-based hierarchical K -means (BKHK) method and the bipartite graph theory. Thereafter, we proposed a fast self-supervised clustering method involved in this crucial semisupervised framework, in which all labels are inferred from a constructed bipartite graph with exactly k connected components. The proposed method remarkably accelerates the general semisupervised learning through the anchor and consists of four significant parts: 1) obtaining the anchor set as interim through BKHK algorithm; 2) constructing the bipartite graph; 3) solving the self-supervised problem to construct a typical probability model with FSSF; and 4) selecting the most representative points regarding anchors from BKHK as an interim and conducting label propagation. The experimental results on toy examples and benchmark data sets have demonstrated that the proposed method outperforms other approaches.

Details

ISSN :
21622388 and 2162237X
Volume :
33
Database :
OpenAIRE
Journal :
IEEE Transactions on Neural Networks and Learning Systems
Accession number :
edsair.doi.dedup.....7c8945180d0a95927898ac2e40b9938b