Back to Search Start Over

A digital-receiver for the MurchisonWidefield Array

Authors :
Mervyn J. Lynch
David L. Kaplan
N. Udaya Shankar
Grant Hampson
Judd D. Bowman
S. Madhavi
Lincoln J. Greenhill
R. Koenig
T. Booler
W. Arcus
Justin C. Kasper
D. Pallot
Gianni Bernardi
Stephen M. Ord
Ludi deSouza
Alan R. Whitney
Gopalakrishna M R
Eric Kratzenberg
Frank H. Briggs
Edward H. Morgan
John D. Bunton
Melanie Johnston-Hollitt
Stuart Wyithe
David Emrich
David Herne
Daniel A. Mitchell
Jamie Stevens
Joseph Pathikulangara
S. E. Tremblay
D. Anish Roshi
P. A. Kamini
Thiagaraj Prabu
B. B. Kincaid
Joseph E. Salah
K. S. Srivani
Brian Crosse
Randall B. Wayth
Brian E. Corey
Mark Waterson
Robert J. Sault
Ravi Subrahmanyan
Andrew Williams
Miguel F. Morales
Avinash A. Deshpande
Ronald A. Remillard
Rachel L. Webster
Divya Oberoi
Christopher L. Williams
Alan E. E. Rogers
Jacqueline N. Hewitt
Roger J. Cappallo
Robert F. Goeke
Steven Tingay
Deepak Kumar
David G. Barnes
Bryna J. Hazelton
Russell McWhirter
Colin J. Lonsdale
ITA
USA
AUS
Haystack Observatory
MIT Kavli Institute for Astrophysics and Space Research
Goeke, Robert F.
Morgan, Edward H.
Williams, Christopher Leigh
Hewitt, Jacqueline N.
Remillard, Ronald Alan
Kratzenberg, Eric W.
McWhirter, Stephen R.
Cappallo, Roger J.
Corey, Brian E.
Kincaid, Barton B.
Lonsdale, Colin John
Oberoi, Divya
Rogers, Alan E. E.
Salah, Joseph E.
Whitney, Alan R.
Source :
arXiv
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

An FPGA-based digital-receiver has been developed for a low-frequency imaging radio interferometer, the Murchison Widefield Array (MWA). The MWA, located at the Murchison Radio-astronomy Observatory (MRO) in Western Australia, consists of 128 dual-polarized aperture-array elements (tiles) operating between 80 and 300\,MHz, with a total processed bandwidth of 30.72 MHz for each polarization. Radio-frequency signals from the tiles are amplified and band limited using analog signal conditioning units; sampled and channelized by digital-receivers. The signals from eight tiles are processed by a single digital-receiver, thus requiring 16 digital-receivers for the MWA. The main function of the digital-receivers is to digitize the broad-band signals from each tile, channelize them to form the sky-band, and transport it through optical fibers to a centrally located correlator for further processing. The digital-receiver firmware also implements functions to measure the signal power, perform power equalization across the band, detect interference-like events, and invoke diagnostic modes. The digital-receiver is controlled by high-level programs running on a single-board-computer. This paper presents the digital-receiver design, implementation, current status, and plans for future enhancements.<br />Comment: 14 pages, 7 figures

Details

ISSN :
15729508 and 09226435
Volume :
39
Database :
OpenAIRE
Journal :
Experimental Astronomy
Accession number :
edsair.doi.dedup.....7c87eb14ce0d3cf7216f17ccb0c95f68