Back to Search Start Over

Efficient Hierarchical Graph-Based Segmentation of RGBD Videos

Authors :
Stan Birchfield
Steven Hickson
Irfan Essa
Henrik I. Christensen
Publication Year :
2018
Publisher :
arXiv, 2018.

Abstract

We present an efficient and scalable algorithm for segmenting 3D RGBD point clouds by combining depth, color, and temporal information using a multistage, hierarchical graph-based approach. Our algorithm processes a moving window over several point clouds to group similar regions over a graph, resulting in an initial over-segmentation. These regions are then merged to yield a dendrogram using agglomerative clustering via a minimum spanning tree algorithm. Bipartite graph matching at a given level of the hierarchical tree yields the final segmentation of the point clouds by maintaining region identities over arbitrarily long periods of time. We show that a multistage segmentation with depth then color yields better results than a linear combination of depth and color. Due to its incremental processing, our algorithm can process videos of any length and in a streaming pipeline. The algorithm's ability to produce robust, efficient segmentation is demonstrated with numerous experimental results on challenging sequences from our own as well as public RGBD data sets.<br />Comment: CVPR 2014

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....7c030048993312053971d23afbc93bb8
Full Text :
https://doi.org/10.48550/arxiv.1801.08981