Back to Search Start Over

Fine-scale automatic mapping of living Posidonia oceanica seagrass beds with underwater photogrammetry

Authors :
Sandra Luque
Florian Holon
Pierre Boissery
Guilhem Marre
Julie Deter
Andromède Océanologie
Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
MARine Biodiversity Exploitation and Conservation (UMR MARBEC)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Agence de l'eau Rhône Méditérranée Corse
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
French Water Agency (Agence de l'eau Rhone-Mediterranee-Corse) 2017-1118LabCom InToSea (ANR Labcom 2, Universite de Montpellier UMR 9190 MARBEC/Andromede Oceanologie) French National Research Agency (ANR) Andromede Oceanologie
Source :
Marine Ecology Progress Series, Marine Ecology Progress Series, Inter Research, 2020, 643, pp.63-74. ⟨10.3354/meps13338⟩
Publication Year :
2020
Publisher :
Inter-Research Science Center, 2020.

Abstract

The Mediterranean seagrass Posidonia oceanica, which provides highly valuable ecosystem services, is subject to increasing anthropogenic pressures, causing habitat loss or fragmentation. Whilst airborne images and acoustic data can be used for monitoring seagrass coverage at a macro-scale and over long time periods, monitoring its health in the short term requires precision mapping in order to assess current regression/progression of individual meadows. However, current fine-scale underwater techniques in the field are imprecise and time-demanding. We propose an automatic classification approach based on underwater photogrammetry for an operational, cost- and time-effective fine-scale monitoring method. The method uses a property of the sparse cloud generated during bundle adjustment—the reconstruction uncertainty—to map seagrass patches. The mean precision, recall and F1 score of the method over 21 study sites with different morphologies were 0.79, 0.91 and 0.84, respectively. However, the fragmentation level of the meadows had a significant negative effect on classification performances. The temporal monitoring of 3 sites using this method proved its operability and showed a positive evolution index of the corresponding meadows over a period of 3 yr. This method is generalizable for most encountered configurations and can be integrated in a large monitoring system, as it enables the production of numerous seagrass maps over a short period of time. Moreover, our methodology could be generalized and applied in the study of other submerged aquatic vegetation by adjusting the method’s parameters.

Details

ISSN :
16161599 and 01718630
Volume :
643
Database :
OpenAIRE
Journal :
Marine Ecology Progress Series
Accession number :
edsair.doi.dedup.....7bfb99ee57b4a699f8c783a36ee4a09e