Back to Search Start Over

Relationship between endosperm cells redox homeostasis and glutenin polymers assembly in developing durum wheat grain

Authors :
Marie-Francoise Samson
Mariana Simões Larraz Ferreira
Marie Helene Morel
Joëlle Bonicel
Ingénierie des Agro-polymères et Technologies Émergentes (UMR IATE)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Fond Unique Interministeriel (GARICC project) through Q@liMe-diterranee competitiveness cluster [06-2-90-6310]
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)
Source :
Plant Physiology and Biochemistry, Plant Physiology and Biochemistry, Elsevier, 2012, 61, pp.36-45. ⟨10.1016/j.plaphy.2012.08.015⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

Assembly of glutenin polymers was examined for two contrasted durum wheat cultivars in connection with changes in the redox status of the endosperm cells that accompanied grain development. The evolutions of the redox state of ascorbate and glutathione, as well as the activities of antioxidant enzymes were measured. Changes in the size distribution profile and redox state of storage proteins were evaluated, with particular emphasis on protein-bound glutathione (PSSG). At the beginning of grain filling phase, the size distribution profile of proteins included an extra peak shoulder at about 40,000 g mol(-1). The shoulder was assimilated to free glutenin subunits as it disappeared concomitantly with the upturn in glutenin polymers accumulation. Irrespective of cultivars, small SDS-soluble polymers accumulated first, followed by larger and insoluble ones, attesting for a progressive polymerization. During the grain filling phase, catalase (EC 1.11.1.6) activity dropped, reaching a very low level at physiological maturity. During the same period, superoxide dismutase (EC 1.15.1.1) and glutathione reductase (EC 1.6.4.2) activities increased steadily while the equilibrium constant between GSSG and PSSG shifted from 10(-2) to unity. These results demonstrated that grain filling was accompanied by a continuous decrease in cellular redox potential. In this context, formation of protein-bound glutathione would represent a protective mechanism against irreversible thiol oxidation. Storage protein S-gluta-thionylation instead of limiting glutenin polymer assembly as it has been proposed might be a required intermediate step for glutenin subunits pairing. (C) 2012 Elsevier Masson SAS. All rights reserved.

Details

Language :
English
ISSN :
09819428
Database :
OpenAIRE
Journal :
Plant Physiology and Biochemistry, Plant Physiology and Biochemistry, Elsevier, 2012, 61, pp.36-45. ⟨10.1016/j.plaphy.2012.08.015⟩
Accession number :
edsair.doi.dedup.....7bf20ac7bf14505180861b5042d37843
Full Text :
https://doi.org/10.1016/j.plaphy.2012.08.015⟩