Back to Search Start Over

Co-Clustering of Ordinal Data via Latent Continuous Random Variables and Not Missing at Random Entries

Authors :
Marco Corneli
Pierre Latouche
Charles Bouveyron
Laboratoire Jean Alexandre Dieudonné (LJAD)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Modèles et algorithmes pour l’intelligence artificielle (MAASAI)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (LJAD)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145)
Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Laboratoire Jean Alexandre Dieudonné (JAD)
Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (JAD)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Source :
Journal of Computational and Graphical Statistics, Journal of Computational and Graphical Statistics, 2020, ⟨10.1080/10618600.2020.1739533⟩, Journal of Computational and Graphical Statistics, Taylor & Francis, 2020, ⟨10.1080/10618600.2020.1739533⟩
Publication Year :
2020
Publisher :
Informa UK Limited, 2020.

Abstract

International audience; This paper is about the co-clustering of ordinal data. Such data are very common on e-commerce platforms where customers rank the products/services they bought. More in details, we focus on arrays of ordinal (possibly missing) data involving two disjoint sets of individuals/objects corresponding to the rows/columns of the arrays. Typically, an observed entry (i, j) in the array is an ordinal score assigned by the individual/row i to the object/column j. A generative model for arrays of ordinal data is introduced along with an inference algorithm for parameters estimation. The model relies on latent continuous random variables and the fitting allows to simultaneously co-cluster the rows and columns of an array. The estimation of the model parameters is performed via a classification expectation maximization (C-EM) algorithm. A model selection criterion is formally obtained to select the number of row and column clusters. In order to show that our approach reaches and often outperforms the state of the art, we carry out numerical experiments on synthetic data. Finally, applications on real datasets highlight the model capacity to deal with very sparse arrays.

Details

ISSN :
15372715 and 10618600
Volume :
29
Database :
OpenAIRE
Journal :
Journal of Computational and Graphical Statistics
Accession number :
edsair.doi.dedup.....7bec0195fdcc69080d2a93b20f281e78
Full Text :
https://doi.org/10.1080/10618600.2020.1739533