Back to Search
Start Over
On the curvature of conic Kähler-Einstein metrics
- Publication Year :
- 2018
- Publisher :
- American Mathematical Society, 2018.
-
Abstract
- We prove a regularity result for Monge–Ampere equations degenerate along smooth divisor on Kahler manifolds in Donaldson’s spaces of $$\beta $$ -weighted functions. We apply this result to study the curvature of Kahler metrics with conical singularities and give a geometric sufficient condition on the divisor for its boundedness.
- Subjects :
- Mathematics - Differential Geometry
Pure mathematics
Mathematics::Number Theory
Conical singularities, conical Kähler metrics, singular Kähler-Einstein metrics, Monge–Ampère equations
Curvature
01 natural sciences
symbols.namesake
Mathematics::Algebraic Geometry
0103 physical sciences
FOS: Mathematics
0101 mathematics
Einstein
Mathematics::Symplectic Geometry
Mathematics
Mathematics::Complex Variables
010102 general mathematics
Degenerate energy levels
Conical surface
Differential Geometry (math.DG)
Differential geometry
Fourier analysis
Conic section
symbols
Gravitational singularity
Mathematics::Differential Geometry
010307 mathematical physics
Geometry and Topology
MAT/03 - GEOMETRIA
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....7bbdcd059c94bd1ab3b3fea940986b36