Back to Search Start Over

Efficacy of targeted indoor residual spraying with the pyrrole insecticide chlorfenapyr against pyrethroid-resistant Aedes aegypti

Authors :
Pablo Manrique-Saide
Carlos Arisqueta-Chablé
Fabián Correa-Morales
Oscar D. Kirstein
Azael Che-Mendoza
Wilberth Bibiano-Marin
Gabriela González-Olvera
Anuar Medina-Barreiro
Gonzalo M. Vazquez-Prokopec
Source :
PLoS Neglected Tropical Diseases, Vol 15, Iss 10, p e0009822 (2021), PLoS Neglected Tropical Diseases
Publication Year :
2021
Publisher :
Public Library of Science (PLoS), 2021.

Abstract

Background There is an increased need to mitigate the emergence of insecticide resistance and incorporate new formulations and modes of application to control the urban vector Aedes aegypti. Most research and development of insecticide formulations for the control of Ae. aegypti has focused on their peridomestic use as truck-mounted ULV-sprays or thermal fogs despite the widespread knowledge that most resting Ae. aegypti are found indoors. A recent modification of indoor residual spraying (IRS), termed targeted IRS (TIRS) works by restricting applications to 1.5 m down to the floor and on key Ae. aegypti resting sites (under furniture). TIRS also opens the possibility of evaluating novel residual insecticide formulations currently being developed for malaria IRS. Methods We evaluated the residual efficacy of chlorfenapyr, formulated as Sylando 240SC, for 12 months on free-flying field-derived pyrethroid-resistant Ae. aegypti using a novel experimental house design in Merida, Mexico. On a monthly basis, 600 female Ae. aegypti were released into the houses and left indoors with access to sugar solution for 24 hours. After the exposure period, dead and alive mosquitoes were counted in houses treated with chlorfenapyr as well as untreated control houses to calculate 24-h mortality. An evaluation for these exposed cohorts of surviving mosquitoes was extended up to seven days under laboratory conditions to quantify “delayed mortality”. Results Mean acute (24-h) mortality of pyrethroid-resistant Ae. aegypti ranged 80–97% over 5 months, dropping below 30% after 7 months post-TIRS. If delayed mortality was considered (quantifying mosquito mortality up to 7 days after exposure), residual efficacy was above 90% for up to 7 months post-TIRS application. Generalized Additive Mixed Models quantified a residual efficacy of chlorfenapyr of 225 days (ca. 7.5 months). Conclusions Chlorfenapyr represents a new option for TIRS control of Ae. aegypti in urban areas, providing a highly-effective time of protection against indoor Ae. aegypti females of up to 7 months.<br />Author summary Vector control (VC) for managing Aedes aegypti and reducing transmission of Aedes-borne diseases is largely focused on peridomestic insecticide applications. However, the indoor resting behavior of Ae. aegypti and the acceleration of insecticide resistance owed to reduced modes of action have diminished the effectiveness of many VC tools. A targeted Indoor residual spraying (TIRS) modality in experimental housing units was employed to investigate the potential of chlorfenapyr, a pyrrole-class insecticide with known effectiveness to resistant mosquito species. This was the first investigation for chlorfenapyr use against locally resistant Ae. aegypti (Merida, Mexico) with this approach. Two treatment arms were investigated in the present study: TIRS and a control house where only water was sprayed. A comparison of entomological efficacy for TIRS applied to interior perimeter walls below 1.5 m with chlorfenapyr (formulated as Sylando 240SC) at 250 mg/m2 over 12 months was assessed. TIRS chlorfenapyr treatments were highly efficacious and led to acute mortalities (after 24 exposure) above 80% up to 5 months; delayed mortalities (to Ae. aegypti) were monitored over seven days post exposures vs untreated controls. When delayed mortality was considered, residual efficacy of chlorfenapyr extended to 7 months. These data provide evidence that TIRS chlorfenapyr is an effective Aedes management tool that surpassed efficacy profiles for other TIRS insecticides that have been previously reported with this method. Further, Chlorfenapyr emerges as a novel addition to Ae. aegypti VC, and future studies should focus on its effectiveness and residual power as part of Phase II-III TIRS trials.

Details

Language :
English
ISSN :
19352735 and 19352727
Volume :
15
Issue :
10
Database :
OpenAIRE
Journal :
PLoS Neglected Tropical Diseases
Accession number :
edsair.doi.dedup.....7b8e7eb4301baf8a5a0e1eed2394d840