Back to Search Start Over

A nonlinear semantic-preserving projection approach to visualize multivariate periodical time series

Authors :
Pierre Blanchart
Marine Depecker
Laboratoire d'analyse des données et d'intelligence des systèmes (LADIS)
Département Métrologie Instrumentation & Information (DM2I)
Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Source :
IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Neural Networks and Learning Systems, 2023, 25 (6), pp.1053-1070. ⟨10.1109/TNNLS.2013.2285928⟩, IEEE Transactions on Neural Networks and Learning Systems, IEEE, 2014, 25 (6), pp.1053-1070. ⟨10.1109/TNNLS.2013.2285928⟩
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

A major drawback of nonlinear dimensionality reduction (DR) techniques is their inability to preserve some authentic information from the source domain, leading to projections that are often hard to interpret when it comes to observing anything other than the topological structure of the data. In this paper, we propose a nonlinear DR approach enforcing projection constraints resulting from an a priori knowledge about the structure of the data in multivariate periodical time series. We then propose several ways of exploiting this constrained projection to extract user-relevant information, such as the nominal behavior of a periodical dynamical system or the deviant behaviors which may occur at different time scales. The techniques are demonstrated on both a synthetic dataset composed of simulated multivariate data exhibiting a periodical behavior, and a real dataset corresponding to six months of sensor data acquisitions and recordings inside experimental buildings. 1 We would like to thank the Institut National de l'Energie Solaire (INES) and the CEA, LITEN, Laboratoire Energetique du Bâtiment for providing the data.

Details

Language :
English
ISSN :
2162237X
Database :
OpenAIRE
Journal :
IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Neural Networks and Learning Systems, 2023, 25 (6), pp.1053-1070. ⟨10.1109/TNNLS.2013.2285928⟩, IEEE Transactions on Neural Networks and Learning Systems, IEEE, 2014, 25 (6), pp.1053-1070. ⟨10.1109/TNNLS.2013.2285928⟩
Accession number :
edsair.doi.dedup.....7b82b4e2a2b469b0e8820c7c48135df5