Back to Search
Start Over
Regulation of mesenchymal signaling in palatal mucosa differentiation
- Source :
- Histochemistry and cell biology. 149(2)
- Publication Year :
- 2017
-
Abstract
- Epithelial differentiation is thought to be determined by mesenchymal components during embryogenesis. In mice, palatal mucosa showed the region-specific keratinization pattern along antero-posterior axis. However, developmental mechanisms involved in oral mucosa differentiation with fine tuning of keratinization are not elucidated yet. To reveal this developmental mechanism, first, we conducted tissue recombination assay of the palate at E16 for 2 days which revealed that epithelial differentiation with specific localization of CK10 is modulated by mesenchymal components. Based on the results, we propose that mesenchymal signaling would determine the presumptive fate of developing palatal epithelium in spatiotemporal manner. Genome-wide screening analysis using laser micro-dissection to collect spatiotemporal specific molecules between anterior and posterior palate suggested Meox2 in the posterior mesenchymal tissue to be a candidate regulator controlling epithelial differentiation. To examine the detailed spatiotemporal function of Meox2, we employed in vitro organ cultivation with the loss- and gain-of-function studies at E14.5 for 2 and 4 days, respectively. Our results suggest that posteriorly expressed Meox2 modulates non-keratinized epithelial differentiation through complex signaling regulations in mice palatogenesis.
- Subjects :
- 0301 basic medicine
Histology
Epithelial-Mesenchymal Transition
Tissue Recombination
Regulator
Biology
Tissue Culture Techniques
03 medical and health sciences
Mice
Keratin
medicine
Animals
Oral mucosa
Molecular Biology
chemistry.chemical_classification
Homeodomain Proteins
Mice, Inbred ICR
Palate
Gene Expression Profiling
Embryogenesis
Mesenchymal stem cell
Mouth Mucosa
Cell Differentiation
Cell Biology
Keratin-10
Epithelium
Cell biology
Medical Laboratory Technology
030104 developmental biology
medicine.anatomical_structure
chemistry
Developmental biology
Signal Transduction
Subjects
Details
- ISSN :
- 1432119X
- Volume :
- 149
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Histochemistry and cell biology
- Accession number :
- edsair.doi.dedup.....7b6534cae9adcfe77f57021680424e8b