Back to Search Start Over

Bijective enumeration of planar bipartite maps with three tight boundaries, or how to slice pairs of pants

Authors :
Bouttier, Jérémie
Guitter, Emmanuel
Miermont, Grégory
Institut de Physique Théorique - UMR CNRS 3681 (IPHT)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Physique de l'ENS Lyon (Phys-ENS)
École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon
Unité de Mathématiques Pures et Appliquées (UMPA-ENSL)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)
ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010)
ANR-18-CE40-0033,DIMERS,Dimères : de la combinatoire à la mécanique quantique(2018)
ANR-19-CE48-0011,COMBINE,Combinatoire enumerative en interaction avec l'algebre, la theorie des nombres et la physique(2019)
École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)
Source :
Annales Henri Lebesgue, Annales Henri Lebesgue, 2022, 5, pp.1035-1110. ⟨10.5802/ahl.143⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We consider planar maps with three boundaries, colloquially called pairs of pants. In the case of bipartite maps with controlled face degrees, a simple expression for their generating function was found by Eynard and proved bijectively by Collet and Fusy. In this paper, we obtain an even simpler formula for \emph{tight} pairs of pants, namely for maps whose boundaries have minimal length in their homotopy class. We follow a bijective approach based on the slice decomposition, which we extend by introducing new fundamental building blocks called bigeodesic triangles and diangles, and by working on the universal cover of the triply punctured sphere. We also discuss the statistics of the lengths of minimal separating loops in (non necessarily tight) pairs of pants and annuli, and their asymptotics in the large volume limit.<br />76 pages, 29 figures, final version

Details

Language :
English
ISSN :
26449463
Database :
OpenAIRE
Journal :
Annales Henri Lebesgue, Annales Henri Lebesgue, 2022, 5, pp.1035-1110. ⟨10.5802/ahl.143⟩
Accession number :
edsair.doi.dedup.....7b6055041547baa3809d703d0303d882
Full Text :
https://doi.org/10.5802/ahl.143⟩