Back to Search Start Over

Nanoscale lipid membrane mimetics in spin-labeling and electron paramagnetic resonance spectroscopy studies of protein structure and function

Authors :
Elka R. Georgieva
Source :
Nanotechnology Reviews, Vol 6, Iss 1, Pp 75-92 (2017)
Publication Year :
2017
Publisher :
Walter de Gruyter GmbH, 2017.

Abstract

Cellular membranes and associated proteins play critical physiological roles in organisms from all life kingdoms. In many cases, malfunction of biological membranes triggered by changes in the lipid bilayer properties or membrane protein functional abnormalities lead to severe diseases. To understand in detail the processes that govern the life of cells and to control diseases, one of the major tasks in biological sciences is to learn how the membrane proteins function. To do so, a variety of biochemical and biophysical approaches have been used in molecular studies of membrane protein structure and function on the nanoscale. This review focuses on electron paramagnetic resonance with site-directed nitroxide spin-labeling (SDSL EPR), which is a rapidly expanding and powerful technique reporting on the local protein/spin-label dynamics and on large functionally important structural rearrangements. On the other hand, adequate to nanoscale study membrane mimetics have been developed and used in conjunction with SDSL EPR. Primarily, these mimetics include various liposomes, bicelles, and nanodiscs. This review provides a basic description of the EPR methods, continuous-wave and pulse, applied to spin-labeled proteins, and highlights several representative applications of EPR to liposome-, bicelle-, or nanodisc-reconstituted membrane proteins.

Details

ISSN :
21919097 and 21919089
Volume :
6
Database :
OpenAIRE
Journal :
Nanotechnology Reviews
Accession number :
edsair.doi.dedup.....7b3bf674b047ca4493e3abd32931a432
Full Text :
https://doi.org/10.1515/ntrev-2016-0080