Back to Search Start Over

Spinal Serotonin 1A Receptor Contributes to the Analgesia of Acupoint Catgut Embedding by Inhibiting Phosphorylation of the N-Methyl-d-Aspartate Receptor GluN1 Subunit in Complete Freund's Adjuvant-Induced Inflammatory Pain in Rats

Authors :
Wen-Li Mi
Wen-Wen Zhang
Li-Xia Du
Wen-Shan Sun
Yang Zhou
Xue-Ming Hu
Fei Xu
Wenqiang Cui
Wei Yang
Qi-Liang Mao-Ying
Yu-Xia Chu
Yan-Qing Wang
Source :
The journal of pain. 20(1)
Publication Year :
2018

Abstract

Acupoint catgut embedding (ACE) is a widely used traditional Chinese medicine method to manage various diseases, including chronic inflammatory pain. We sought to assess the possible analgesic effects of ACE in comparison with electroacupuncture (EA) and to study the analgesic mechanisms of ACE in a rat model of inflammatory pain induced by injection of complete Freund's adjuvant (CFA) into the hind paw of rats. The von Frey, radiant heat, and gait analysis tests were performed to evaluate the analgesic effects of ACE and EA, and Western blot and immunohistochemistry assays were carried out to determine the molecular mechanisms of ACE. ACE treatments were administered every 4 days or every week with different acupoints (ipsilateral, contralateral, or bilateral ST36 and GB30 acupoints). The most effective ACE strategy for attenuating the nocifensive response induced by CFA injection was performing ACE once a week at ipsilateral ST36 in combination with GB30. EA treatment every other day at ipsilateral ST36 and GB30 showed comparable analgesic effects. ACE inhibited the increased activation of the GluN1 subunit of the N-methyl-d-aspartate receptor and the subsequent Ca2+-dependent signals (CaMKII, ERK, and CREB) that take place in response to CFA. The effects of ACE were similar to intrathecal injection of vilazodone (a serotonin 1A receptor [5-HT1AR] agonist) and were blocked by WAY-100635 (a 5-HT1AR antagonist). In summary, we show that ACE attenuates CFA-induced inflammatory pain in rats by activating spinal 5-HT1AR and by inhibiting the phosphorylation of GluN1, thus, inhibiting the activation of Ca2+-dependent signaling cascades. PERSPECTIVE: This article presents the novel evidence concerning the spinal 5-HT1AR activation-related molecular signaling of ACE analgesia in a rat model of CFA-induced inflammatory pain. This work may help clinicians to verify the effectiveness of ACE analgesia and to better understand the underlying mechanism.

Details

ISSN :
15288447
Volume :
20
Issue :
1
Database :
OpenAIRE
Journal :
The journal of pain
Accession number :
edsair.doi.dedup.....7aadb86dc541814e45f2365b5154a36e