Back to Search Start Over

G1/S Cell Cycle Checkpoint Dysfunction in Lymphoblasts from Sporadic Parkinson’s Disease Patients

Authors :
Ángeles Martín-Requero
Carolina Alquézar
Fernando Bartolome
José Antonio Molina
Ana de la Encarnación
Noemí Esteras
Félix Bermejo-Pareja
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

38 p.-8 fig.<br />Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease among aging individuals, affecting greatly the quality of their life. However, the pathogenesis of Parkinson's disease is still incompletely understood to date. Increasing experimental evidence suggests that cell cycle reentry of postmitotic neurons precedes many instances of neuronal death. Since cell cycle dysfunction is not restricted to neurons, we investigated this issue in peripheral cells from patients suffering from sporadic PD and age-matched control individuals. Here, we describe increased cell cycle activity in immortalized lymphocytes from PD patients, that is associated to enhanced activity of the cyclin D3/CDK6 complex, resulting in higher phosphorylation of the pRb family protein and thus, in a G1/S regulatory failure. Decreased degradation of cyclin D3, together with increased p21 degradation, as well as elevated levels of CDK6 mRNA and protein were found in PD lymphoblasts. Inhibitors of cyclin D3/CDK6 activity like sodium butyrate, PD-332991, and rapamycin were able to restore the response of PD cells to serum stimulation. We conclude that lymphoblasts from PD patients are a suitable model to investigate cell biochemical aspects of this disease. It is suggested that cyclin D3/CDK6-associated kinase activity could be potentially a novel therapeutic target for the treatment of PD.<br />This work has been supported by grants from Ministerio de Economía y Competitividad (SAF2011-28603) and Fundación Ramón Areces to AMR, and Fundación Neurociencias y Envejecimiento to JAM.

Details

ISSN :
15591182 and 08937648
Volume :
52
Database :
OpenAIRE
Journal :
Molecular Neurobiology
Accession number :
edsair.doi.dedup.....7aa0dcc49ba31c208c2cc1017c26c8ac