Back to Search Start Over

Quantifying the uncertainties-induced errors in robot impact detection methods

Authors :
N. Briquet-Kerestedjian
M. Makarov
P. Rodriguez-Ayerbe
M. Grossard
Laboratoire des signaux et systèmes (L2S)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Source :
IECON, IECON 2016-42nd Annual Conference of IEEE Industrial Electronics Society, IECON 2016-42nd Annual Conference of IEEE Industrial Electronics Society, Oct 2016, Florence, Italy. pp.5328-5334, ⟨10.1109/iecon.2016.7793186⟩
Publication Year :
2016
Publisher :
IEEE, 2016.

Abstract

978-1-5090-3474-1; International audience; In the context of human-robot collaboration, an efficient impact detection is essential for safe operation. Residual-based collision detection relies on the difference between the estimated and actual motor torques. However, in these model-based methods uncertainties affect the residual in the same structural way as a collision does, leading to potential false alarms. This paper proposes to quantify the influence of uncertainties on residual generation methods based on the inverse dynamic model for both rigid and elastic-joint robots. These uncertainties-induced errors are investigated depending on their origin (parameters estimation or numerical differentiation). Boundaries of these errors are determined along a given trajectory and account as the minimum threshold of detectability of a collision. These results are illustrated in simulation.

Details

ISBN :
978-1-5090-3474-1
ISBNs :
9781509034741
Database :
OpenAIRE
Journal :
IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society
Accession number :
edsair.doi.dedup.....7a9d9a8031b0ded51f881cbe1cc80d62
Full Text :
https://doi.org/10.1109/iecon.2016.7793186