Back to Search
Start Over
Pressure‐Induced Coordination Changes in a Pyrolitic Silicate Melt From Ab Initio Molecular Dynamics Simulations
- Source :
- Journal of Geophysical Research. Solid Earth
- Publication Year :
- 2019
- Publisher :
- American Geophysical Union (AGU), 2019.
-
Abstract
- With ab initio molecular dynamics simulations on a Na‐, Ca‐, Fe‐, Mg‐, and Al‐bearing silicate melt of pyrolite composition, we examine the detailed changes in elemental coordination as a function of pressure and temperature. We consider the average coordination as well as the proportion and distribution of coordination environments at pressures and temperatures encompassing the conditions at which molten silicates may exist in present‐day Earth and those of the Early Earth's magma ocean. At ambient pressure and 2,000 K, we find that the average coordination of cations with respect to oxygen is 4.0 for Si‐O, 4.0 for Al‐O, 3.7 for Fe‐O, 4.6 for Mg‐O, 5.9 for Na‐O, and 6.2 for Ca‐O. Although the coordination for iron with respect to oxygen may be underestimated, the coordination number for all other cations are consistent with experiments. By 15 GPa (2,000 K), the average coordination for Si‐O remains at 4.0 but increases to 4.1 for Al‐O, 4.2 for Fe‐O, 4.9 for Mg‐O, 8.0 for Na‐O, and 6.8 for Ca‐O. The coordination environment for Na‐O remains approximately constant up to core‐mantle boundary conditions (135 GPa and 4000 K) but increases to about 6 for Si‐O, 6.5 for Al‐O, 6.5 for Fe‐O, 8 for Mg‐O, and 9.5 for Ca‐O. We discuss our results in the context of the metal‐silicate partitioning behavior of siderophile elements and the viscosity changes of silicate melts at upper mantle conditions. Our results have implications for melt properties, such as viscosity, transport coefficients, thermal conductivities, and electrical conductivities, and will help interpret experimental results on silicate glasses.<br />Key Points The proportion and distribution of cation‐to‐oxygen coordination environments in a pyrolite melt have been determined as a function of depthWe examine the distribution of lifetimes of cation‐oxygen species at select pressure‐temperature conditionsOur results are compared to previous ab initio calculations on mafic silicate melts and to experiments on various silicate phases
- Subjects :
- Equations of State
Materials science
010504 meteorology & atmospheric sciences
Magma Genesis and Partial Melting
Coordination number
Thermodynamics
chemistry.chemical_element
Mantle Processes
Context (language use)
01 natural sciences
Oxygen
Viscosity
chemistry.chemical_compound
Geochemistry and Petrology
Earth and Planetary Sciences (miscellaneous)
Planetary Sciences: Solid Surface Planets
Research Articles
Mineralogy and Petrology
0105 earth and related environmental sciences
Mineral Physics
Silicate
Planetary Mineralogy and Petrology
Geochemistry
Geophysics
chemistry
Space and Planetary Science
Pyrolite
Chemistry and Physics of Minerals and Rocks/Volcanology
Earth (classical element)
Composition
Research Article
Ambient pressure
Subjects
Details
- ISSN :
- 21699356 and 21699313
- Volume :
- 124
- Database :
- OpenAIRE
- Journal :
- Journal of Geophysical Research: Solid Earth
- Accession number :
- edsair.doi.dedup.....7a7bcbf09ffe1ff7507b24b62c9386d9