Back to Search Start Over

Microcavity polaritons for topological photonics

Authors :
Solnyshkov, Dmitry D.
Malpuech, Guillaume
St-Jean, Philippe
Ravets, Sylvain
Bloch, Jacqueline
Amo, Alberto
Institut Pascal (IP)
SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Centre de Nanosciences et de Nanotechnologies (C2N)
Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)
ANR-16-CE30-0021,QFL,Fluides Quantiques de Lumière(2016)
Source :
Optical Materials Express, Optical Materials Express, 2021, ⟨10.1364/OME.414890⟩, Optical Materials Express, OSA pub, 2021, ⟨10.1364/OME.414890⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Microcavity polaritons are light-matter quasiparticles that arise from the strong coupling between excitons and photons confined in a semiconductor microcavity. They typically operate at visible or near visible wavelengths. They combine the properties of confined electromagnetic fields, including a sizeable spin-orbit coupling, and the sensitivity to external magnetic fields and particle interactions inherited from their partly matter nature. These features make polaritons an excellent platform to study topological phases in photonics in one and two dimensional lattices, which band properties can be directly accessed using standard optical tools. In this review we describe the main properties of microcavity polaritons and the main observations in the field of topological photonics, which include, among others, lasing in topological edge states, the implementation of a polariton Chern insulator under an external magnetic field and the direct measurement of fundamental quantities such as the quantum geometric tensor and winding numbers in one- and two-dimensional lattices. Polariton interactions open exciting perspectives for the study of nonlinear topological phases.<br />19 pages, 8 figures, review article

Details

Language :
English
ISSN :
21593930
Database :
OpenAIRE
Journal :
Optical Materials Express, Optical Materials Express, 2021, ⟨10.1364/OME.414890⟩, Optical Materials Express, OSA pub, 2021, ⟨10.1364/OME.414890⟩
Accession number :
edsair.doi.dedup.....7a72b637619738d1d15d99cf869abad2
Full Text :
https://doi.org/10.1364/OME.414890⟩