Back to Search Start Over

PAC-Bayesian Bound for the Conditional Value at Risk

Authors :
Mhammedi, Zakaria
Guedj, Benjamin
Williamson, Robert C.
Australian National University (ANU)
University College of London [London] (UCL)
Department of Computer science [University College of London] (UCL-CS)
Inria-CWI (Inria-CWI)
Centrum Wiskunde & Informatica (CWI)-Institut National de Recherche en Informatique et en Automatique (Inria)
MOdel for Data Analysis and Learning (MODAL)
Laboratoire Paul Painlevé (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS)
Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille)
The Inria London Programme (Inria-London)
University College of London [London] (UCL)-University College of London [London] (UCL)-Institut National de Recherche en Informatique et en Automatique (Inria)
Unknown Labs [Inria]
Computer science department [University College London] (UCL-CS)
Laboratoire Paul Painlevé - UMR 8524 (LPP)
Source :
NeurIPS 2020, NeurIPS 2020, Dec 2020, Vancouver / Virtual, Canada
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; Conditional Value at Risk (CVAR) is a family of "coherent risk measures" which generalize the traditional mathematical expectation. Widely used in mathematical finance, it is garnering increasing interest in machine learning, e.g., as an alternate approach to regularization, and as a means for ensuring fairness. This paper presents a generalization bound for learning algorithms that minimize the CVAR of the empirical loss. The bound is of PAC-Bayesian type and is guaranteed to be small when the empirical CVAR is small. We achieve this by reducing the problem of estimating CVAR to that of merely estimating an expectation. This then enables us, as a by-product, to obtain concentration inequalities for CVAR even when the random variable in question is unbounded.

Details

Language :
English
Database :
OpenAIRE
Journal :
NeurIPS 2020, NeurIPS 2020, Dec 2020, Vancouver / Virtual, Canada
Accession number :
edsair.doi.dedup.....7a3714e4007b18235575a831fb7685f2