Back to Search Start Over

Collaborative Optimization of Emissions and Abatement Costs for Air Pollutants and Greenhouse Gases from the Perspective of Energy Structure: An Empirical Analysis in Tianjin

Authors :
Xiaran Zhang
Meng Cai
Xiaoxia Rong
Qingchun Meng
Source :
Sustainability, Volume 11, Issue 14, Sustainability, Vol 11, Iss 14, p 3872 (2019)
Publication Year :
2019
Publisher :
Multidisciplinary Digital Publishing Institute, 2019.

Abstract

Both air pollution and greenhouse effect have become important issues with regard to environmental protection both in China and across the world. Consumption of energy derived from coal, oil, and natural gas forms the main source of China&rsquo<br />s major air pollutants, SO2 and NOX, as well as the major greenhouse gas CO2. The energy structure adjustment approach provides a sensible way, not only to achieve climate change mitigation and air pollutant reduction, but also to reduce abatement costs. In this paper, a multi-objective optimization method was adopted in order to analyze the collaborative optimization of emissions and abatement costs for both air pollutants and greenhouse gases. As a typical industrial city and economic center with fossil fuels as its main energy source, Tianjin of China is used as the research sample to prove that this method can mitigate air pollutants and greenhouse gas emissions and reduce abatement costs. Through demonstration, the results show that the optimization method proposed can reduce SO2, NOX, and CO2 emissions by 27,000 tons, 33,000 tons, and 29,000 tons, respectively, and the abatement costs will be reduced by 620 million yuan by adjusting the energy structure of Tianjin. The proposed method also suggests that China can achieve reductions of abatement cost and greenhouse gas and air pollutant emissions under the proposed energy structure. The results indicate that collaborative optimization would help China and other countries cope with climate change while improving domestic air quality.

Details

Language :
English
ISSN :
20711050
Database :
OpenAIRE
Journal :
Sustainability
Accession number :
edsair.doi.dedup.....7a288c8e4ff44968c96f4d63b94623d3
Full Text :
https://doi.org/10.3390/su11143872