Back to Search Start Over

Multi-scale self-organisation of edge plasma turbulent transport in 3D global simulations

Authors :
Nicolas Fedorczak
C. Colin
Patrick Tamain
N. Nace
Philippe Ghendrih
Hugo Bufferand
Eric Serre
Guido Ciraolo
Frédéric Schwander
Institut de Recherche sur la Fusion par confinement Magnétique (IRFM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Physique des interactions ioniques et moléculaires (PIIM)
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2)
Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Plasma Physics and Controlled Fusion, Plasma Physics and Controlled Fusion, IOP Publishing, 2015, 57 (5), pp.054014. ⟨10.1088/0741-3335/57/5/054014⟩, Plasma Physics and Controlled Fusion, 2015, 57 (5), pp.054014. ⟨10.1088/0741-3335/57/5/054014⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; The 3D global edge turbulence code TOKAM3X is used to study the properties of edge particle turbulent transport in circular limited plasmas, including both closed and open flux surfaces. Turbulence is driven by an incoming particle flux from the core plasma and no scale separation between the equilibrium and the fluctuations is assumed. Simulations show the existence of a complex self-organization of turbulence transport coupling scales ranging from a few Larmor radii up to the machine scale. Particle transport is largely dominated by small scale turbulence with fluctuations forming quasi field-aligned filaments. Radial particle transport is intermittent and associated with the propagation of coherent structures on long distances via avalanches. Long range correlations are also found in the poloidal and toroidal direction. The statistical properties of fluctuations vary with the radial and poloidal directions, with larger fluctuation levels and intermittency found in the outboard scrape-off layer (SOL). Radial turbulent transport is strongly ballooned, with 90% of the flux at the separatrix flowing through the low-field side. One of the main consequences is the existence of quasi-sonic asymmetric parallel flows driving a net rotation of the plasma. Simulations also show the spontaneous onset of an intermittent E × B rotation characterized by a larger shear at the separatrix. Strong correlation is found between the turbulent particle flux and the E × B flow shear in a phenomenology reminiscent of H-mode physics. The poloidal position of the limiter is a key player in the observed dynamics.

Details

Language :
English
ISSN :
07413335, 13616587, and 00295515
Database :
OpenAIRE
Journal :
Plasma Physics and Controlled Fusion, Plasma Physics and Controlled Fusion, IOP Publishing, 2015, 57 (5), pp.054014. ⟨10.1088/0741-3335/57/5/054014⟩, Plasma Physics and Controlled Fusion, 2015, 57 (5), pp.054014. ⟨10.1088/0741-3335/57/5/054014⟩
Accession number :
edsair.doi.dedup.....7a106b5de90b51e5dded5fa7f08b61ad