Back to Search Start Over

Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices

Authors :
Stephen V. Kershaw
Haoran Wang
Yuanzhi Jiang
Ting Zhang
Weitao Zheng
Sheng Wang
Andrey L. Rogach
Xiaoyu Zhang
Mengqing You
Chengxi Zhang
Yunguo Li
Qianqian Lin
Mingjian Yuan
Yingguo Yang
Xuyong Yang
Lingmei Kong
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-8 (2021), Nature Communications
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Quasi-two-dimensional (quasi-2D) Ruddlesden–Popper (RP) perovskites such as BA2Csn–1PbnBr3n+1 (BA = butylammonium, n > 1) are promising emitters, but their electroluminescence performance is limited by a severe non-radiative recombination during the energy transfer process. Here, we make use of methanesulfonate (MeS) that can interact with the spacer BA cations via strong hydrogen bonding interaction to reconstruct the quasi-2D perovskite structure, which increases the energy acceptor-to-donor ratio and enhances the energy transfer in perovskite films, thus improving the light emission efficiency. MeS additives also lower the defect density in RP perovskites, which is due to the elimination of uncoordinated Pb2+ by the electron-rich Lewis base MeS and the weakened adsorbate blocking effect. As a result, green light-emitting diodes fabricated using these quasi-2D RP perovskite films reach current efficiency of 63 cd A−1 and 20.5% external quantum efficiency, which are the best reported performance for devices based on quasi-2D perovskites so far.<br />Owing to large exciton binding energy, quasi-2D perovskite is promising for light-emitting application, yet inhomogeneous phases distribution limits the potential. Here, the authors improve the performance by using MeS additive to regulate the phase distribution and to reduce defect density in the films.

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....7a0772d356bb19f6d36e3e280a4d4e0d